Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

OGDH and Bcl-xL loss causes synthetic lethality in glioblastoma
Trang T.T. Nguyen, Consuelo Torrini, Enyuan Shang, Chang Shu, Jeong-Yeon Mun, Qiuqiang Gao, Nelson Humala, Hasan O. Akman, Guoan Zhang, Mike-Andrew Westhoff, Georg Karpel-Massler, Jeffrey N. Bruce, Peter Canoll, Markus D. Siegelin
Trang T.T. Nguyen, Consuelo Torrini, Enyuan Shang, Chang Shu, Jeong-Yeon Mun, Qiuqiang Gao, Nelson Humala, Hasan O. Akman, Guoan Zhang, Mike-Andrew Westhoff, Georg Karpel-Massler, Jeffrey N. Bruce, Peter Canoll, Markus D. Siegelin
View: Text | PDF
Research Article Oncology

OGDH and Bcl-xL loss causes synthetic lethality in glioblastoma

  • Text
  • PDF
Abstract

Glioblastoma (GBM) remains an incurable disease, requiring more effective therapies. Through interrogation of publicly available CRISPR and RNAi library screens, we identified the α-ketoglutarate dehydrogenase (OGDH) gene, which encodes an enzyme that is part of the tricarboxylic acid (TCA) cycle, as essential for GBM growth. Moreover, by combining transcriptome and metabolite screening analyses, we discovered that loss of function of OGDH by the clinically validated drug compound CPI-613 was synthetically lethal with Bcl-xL inhibition (genetically and through the clinically validated BH3 mimetic, ABT263) in patient-derived xenografts as well neurosphere GBM cultures. CPI-613–mediated energy deprivation drove an integrated stress response with an upregulation of the BH3-only domain protein, Noxa, in an ATF4-dependent manner, as demonstrated by genetic loss-of-function experiments. Consistently, silencing of Noxa attenuated cell death induced by CPI-613 in model systems of GBM. In patient-derived xenograft models of GBM in mice, the combination treatment of ABT263 and CPI-613 suppressed tumor growth and extended animal survival more potently than each compound on its own. Therefore, combined inhibition of Bcl-xL along with disruption of the TCA cycle might be a treatment strategy for GBM.

Authors

Trang T.T. Nguyen, Consuelo Torrini, Enyuan Shang, Chang Shu, Jeong-Yeon Mun, Qiuqiang Gao, Nelson Humala, Hasan O. Akman, Guoan Zhang, Mike-Andrew Westhoff, Georg Karpel-Massler, Jeffrey N. Bruce, Peter Canoll, Markus D. Siegelin

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 1,266 378
PDF 181 84
Figure 484 5
Supplemental data 148 27
Citation downloads 70 0
Totals 2,149 494
Total Views 2,643

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts