BACKGROUND As Omicron is prompted to replicate in the upper airway, neutralizing antibodies (NAbs) delivered through inhalation might inhibit early-stage infection in the respiratory tract. Thus, elucidating the prophylactic efficacy of NAbs via nasal spray addresses an important clinical need.METHODS The applicable potential of a nasal spray cocktail containing 2 NAbs was characterized by testing its neutralizing potency, synergetic neutralizing mechanism, emergency protective and therapeutic efficacy in a hamster model, and pharmacokinetics/pharmacodynamic (PK/PD) in human nasal cavity.RESULTS The 2 NAbs displayed broad neutralizing efficacy against Omicron, and they could structurally compensate each other in blocking the Spike-ACE2 interaction. When administrated through the intranasal mucosal route, this cocktail demonstrated profound efficacy in the emergency prevention in hamsters challenged with authentic Omicron BA.1. The investigator-initiated trial in healthy volunteers confirmed the safety and the PK/PD of the NAb cocktail delivered via nasal spray. Nasal samples from the participants receiving 4 administrations over a course of 16 hours demonstrated potent neutralization against Omicron BA.5 in an ex vivo pseudovirus neutralization assay.CONCLUSION These results demonstrate that the NAb cocktail nasal spray provides a good basis for clinical prophylactic efficacy against Omicron infections.TRIAL REGISTRATION www.chictr.org.cn, ChiCTR2200066525.FUNDING The National Science and Technology Major Project (2017ZX10202203), the National Key Research and Development Program of China (2018YFA0507100), Guangzhou National Laboratory (SRPG22-015), Lingang Laboratory (LG202101-01-07), Science and Technology Commission of Shanghai Municipality (YDZX20213100001556), and the Emergency Project from the Science & Technology Commission of Chongqing (cstc2021jscx-fyzxX0001).
Xinghai Zhang, Feiyang Luo, Huajun Zhang, Hangtian Guo, Junhui Zhou, Tingting Li, Shaohong Chen, Shuyi Song, Meiying Shen, Yan Wu, Yan Gao, Xiaojian Han, Yingming Wang, Chao Hu, Xiaodong Zhao, Huilin Guo, Dazhi Zhang, Yuchi Lu, Wei Wang, Kai Wang, Ni Tang, Tengchuan Jin, Menglu Ding, Shuhui Luo, Cuicui Lin, Tingting Lu, Bingxia Lu, Yang Tian, Chengyong Yang, Guofeng Cheng, Haitao Yang, Aishun Jin, Xiaoyun Ji, Rui Gong, Sandra Chiu, Ailong Huang
Usage data is cumulative from April 2024 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 1,450 | 218 |
291 | 67 | |
Figure | 207 | 2 |
Supplemental data | 125 | 6 |
Citation downloads | 93 | 0 |
Totals | 2,166 | 293 |
Total Views | 2,459 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.