Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Combined anti-S1 and anti-S2 antibodies from hybrid immunity elicit potent cross-variant ADCC against SARS-CoV-2
Michael D. Grant, … , Richard J. Stanton, Kayla A. Holder
Michael D. Grant, … , Richard J. Stanton, Kayla A. Holder
Published June 20, 2023
Citation Information: JCI Insight. 2023;8(15):e170681. https://doi.org/10.1172/jci.insight.170681.
View: Text | PDF
Research Article Immunology Vaccines

Combined anti-S1 and anti-S2 antibodies from hybrid immunity elicit potent cross-variant ADCC against SARS-CoV-2

  • Text
  • PDF
Abstract

Antibodies capable of neutralizing SARS-CoV-2 are well studied, but Fc receptor–dependent antibody activities that can also significantly impact the course of infection have not been studied in such depth. Since most SARS-CoV-2 vaccines induce only anti-spike antibodies, here we investigated spike-specific antibody-dependent cellular cytotoxicity (ADCC). Vaccination produced antibodies that weakly induced ADCC; however, antibodies from individuals who were infected prior to vaccination (hybrid immunity) elicited strong anti-spike ADCC. Quantitative and qualitative aspects of humoral immunity contributed to this capability, with infection skewing IgG antibody production toward S2, vaccination skewing toward S1, and hybrid immunity evoking strong responses against both domains. A combination of antibodies targeting both spike domains support strong antibody-dependent NK cell activation, with 3 regions of antibody reactivity outside the receptor-binding domain (RBD) corresponding with potent anti-spike ADCC. Consequently, ADCC induced by hybrid immunity with ancestral antigen was conserved against variants containing neutralization escape mutations in the RBD. Induction of antibodies recognizing a broad range of spike epitopes and eliciting strong and durable ADCC may partially explain why hybrid immunity provides superior protection against infection and disease compared with vaccination alone, and it demonstrates that spike-only subunit vaccines would benefit from strategies that induce combined anti-S1 and anti-S2 antibody responses.

Authors

Michael D. Grant, Kirsten Bentley, Ceri A. Fielding, Keeley M. Hatfield, Danielle P. Ings, Debbie Harnum, Eddie C.Y. Wang, Richard J. Stanton, Kayla A. Holder

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts