Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Improved mitochondrial function in the hearts of sarcolipin-deficient dystrophin and utrophin double-knockout mice
Satvik Mareedu, … , Lai-Hua Xie, Gopal J. Babu
Satvik Mareedu, … , Lai-Hua Xie, Gopal J. Babu
Published April 2, 2024
Citation Information: JCI Insight. 2024;9(9):e170185. https://doi.org/10.1172/jci.insight.170185.
View: Text | PDF
Research Article Metabolism

Improved mitochondrial function in the hearts of sarcolipin-deficient dystrophin and utrophin double-knockout mice

  • Text
  • PDF
Abstract

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease associated with cardiomyopathy. DMD cardiomyopathy is characterized by abnormal intracellular Ca2+ homeostasis and mitochondrial dysfunction. We used dystrophin and utrophin double-knockout (mdx:utrn–/–) mice in a sarcolipin (SLN) heterozygous-knockout (sln+/–) background to examine the effect of SLN reduction on mitochondrial function in the dystrophic myocardium. Germline reduction of SLN expression in mdx:utrn–/– mice improved cardiac sarco/endoplasmic reticulum (SR) Ca2+ cycling, reduced cardiac fibrosis, and improved cardiac function. At the cellular level, reducing SLN expression prevented mitochondrial Ca2+ overload, reduced mitochondrial membrane potential loss, and improved mitochondrial function. Transmission electron microscopy of myocardial tissues and proteomic analysis of mitochondria-associated membranes showed that reducing SLN expression improved mitochondrial structure and SR-mitochondria interactions in dystrophic cardiomyocytes. These findings indicate that SLN upregulation plays a substantial role in the pathogenesis of cardiomyopathy and that reducing SLN expression has clinical implications in the treatment of DMD cardiomyopathy.

Authors

Satvik Mareedu, Nadezhda Fefelova, Cristi L. Galindo, Goutham Prakash, Risa Mukai, Junichi Sadoshima, Lai-Hua Xie, Gopal J. Babu

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 813 224
PDF 120 55
Figure 290 0
Supplemental data 125 14
Citation downloads 78 0
Totals 1,426 293
Total Views 1,719

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts