Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Transcriptional profiling of rare acantholytic disorders suggests common mechanisms of pathogenesis
Quinn R. Roth-Carter, Hope E. Burks, Ziyou Ren, Jennifer L. Koetsier, Lam C. Tsoi, Paul W. Harms, Xianying Xing, Joseph Kirma, Robert M. Harmon, Lisa M. Godsel, Abbey L. Perl, Johann E. Gudjonsson, Kathleen J. Green
Quinn R. Roth-Carter, Hope E. Burks, Ziyou Ren, Jennifer L. Koetsier, Lam C. Tsoi, Paul W. Harms, Xianying Xing, Joseph Kirma, Robert M. Harmon, Lisa M. Godsel, Abbey L. Perl, Johann E. Gudjonsson, Kathleen J. Green
View: Text | PDF
Resource and Technical Advance Dermatology

Transcriptional profiling of rare acantholytic disorders suggests common mechanisms of pathogenesis

  • Text
  • PDF
Abstract

Darier, Hailey-Hailey, and Grover diseases are rare acantholytic skin diseases. While these diseases have different underlying causes, they share defects in cell-cell adhesion in the epidermis and desmosome organization. To better understand the underlying mechanisms leading to disease in these conditions, we performed RNA-seq on lesional skin samples from patients. The transcriptomic profiles of Darier, Hailey-Hailey, and Grover diseases were found to share a remarkable overlap, which did not extend to other common inflammatory skin diseases. Analysis of enriched pathways showed a shared increase in keratinocyte differentiation, and a decrease in cell adhesion and actin organization pathways in Darier, Hailey-Hailey, and Grover diseases. Direct comparison to atopic dermatitis and psoriasis showed that the downregulation in actin organization pathways was a unique feature in the acantholytic skin diseases. Furthermore, upstream regulator analysis suggested that a decrease in SRF/MRTF activity was responsible for the downregulation of actin organization pathways. Staining for MRTFA in lesional skin samples showed a decrease in nuclear MRTFA in patient skin compared with normal skin. These findings highlight the significant level of similarity in the transcriptome of Darier, Hailey-Hailey, and Grover diseases, and identify decreases in actin organization pathways as a unique signature present in these conditions.

Authors

Quinn R. Roth-Carter, Hope E. Burks, Ziyou Ren, Jennifer L. Koetsier, Lam C. Tsoi, Paul W. Harms, Xianying Xing, Joseph Kirma, Robert M. Harmon, Lisa M. Godsel, Abbey L. Perl, Johann E. Gudjonsson, Kathleen J. Green

×

Figure 3

DD, HHD, and GD are more similar to each other than to PSO and AD.

Options: View larger image (or click on image) Download as PowerPoint
DD, HHD, and GD are more similar to each other than to PSO and AD.
(A) H...
(A) Heatmap showing Spearman’s correlation values between the batch-adjusted counts from all individual samples grouped using hierarchical clustering. (B) Dimensional reduction plot using UMAP on all individual samples. (C) Venn diagrams showing overlap in genes upregulated or downregulated in PSO, AD, and combined acantholytic diseases (P = 0.4 for downregulated genes and *P < 0.00001 for upregulated genes by permutation test). (D) Significantly upregulated GO BP pathways present in all conditions. (E) GO BP pathways significantly downregulated in DD, HHD, and GD, but unchanged in PSO and AD.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts