Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
B cell subsets contribute to myocardial protection by inducing neutrophil apoptosis after ischemia and reperfusion
Fangyang Huang, Jialiang Zhang, Hao Zhou, Tianyi Qu, Yan Wang, Kexin Jiang, Yutong Liu, Yuanning Xu, Mao Chen, Li Chen
Fangyang Huang, Jialiang Zhang, Hao Zhou, Tianyi Qu, Yan Wang, Kexin Jiang, Yutong Liu, Yuanning Xu, Mao Chen, Li Chen
View: Text | PDF
Research Article Cardiology Immunology

B cell subsets contribute to myocardial protection by inducing neutrophil apoptosis after ischemia and reperfusion

  • Text
  • PDF
Abstract

A robust, sterile inflammation underlies myocardial ischemia and reperfusion injury (MIRI). Several subsets of B cells possess the immunoregulatory capacity that limits tissue damage, yet the role of B cells in MIRI remains elusive. Here, we sought to elucidate the contribution of B cells to MIRI by transient ligation of the left anterior descending coronary artery in B cell–depleted or –deficient mice. Following ischemia and reperfusion (I/R), regulatory B cells are rapidly recruited to the heart. B cell–depleted or –deficient mice exhibited exacerbated tissue damage, adverse cardiac remodeling, and an augmented inflammatory response after I/R. Rescue and chimeric experiments indicated that the cardioprotective effect of B cells was not solely dependent on IL-10. Coculture experiments demonstrated that B cells induced neutrophil apoptosis through contact-dependent interactions, subsequently promoting reparative macrophage polarization by facilitating the phagocytosis of neutrophils by macrophages. The in vivo cardioprotective effect of B cells was undetectable in the absence of neutrophils after I/R. Mechanistically, ligand-receptor imputation identified FCER2A as a potential mediator of interactions between B cells and neutrophils. Blocking FCER2A on B cells resulted in a reduction in the percentage of apoptotic neutrophils, contributing to the deterioration of cardiac remodeling. Our findings unveil a potential cardioprotective role of B cells in MIRI through mechanisms involving FCER2A, neutrophils, and macrophages.

Authors

Fangyang Huang, Jialiang Zhang, Hao Zhou, Tianyi Qu, Yan Wang, Kexin Jiang, Yutong Liu, Yuanning Xu, Mao Chen, Li Chen

×

Figure 9

The classical death ligand–receptor pairs did not mediate the proapoptotic role of B cells against neutrophils.

Options: View larger image (or click on image) Download as PowerPoint
The classical death ligand–receptor pairs did not mediate the proapoptot...
(A) The expression of FASL, PD-L1, and TRAIL on B cells with or without LPS (100 ng/mL) treatment. (B) The expression of FAS, PD-1, and DR5 on neutrophils. (C) Representative flow cytometry images for the detection and quantification of apoptotic neutrophils in each group. In the presence of LPS (100 ng/mL) or vehicle, freshly isolated neutrophils were cocultured for 12 hours with B cells that were preincubated with anti-FASL (10 μg/mL), anti–PD-L1 (10 μg/mL), or vehicle. The apoptotic neutrophils were detected using an annexin V/PI assay. Data are presented as mean ± SEM. *P < 0.05; **P <0.01; ***P < 0.001 by unpaired, 2-tailed t test (A and B) or 1-way ANOVA test followed by Tukey’s post hoc test (C). The experiments were independently replicated twice. FMO, fluorescence minus one; αFASL, anti-FASL antibody; αPD-L1, anti–PD-L1 antibody.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts