Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Tuft cells are required for a rhinovirus-induced asthma phenotype in immature mice
Yiran Li, Mingyuan Han, Shilpi Singh, Haley A. Breckenridge, Jordan E. Kreger, Claudia C. Stroupe, Daniel A. Sawicky, Shiuhyang Kuo, Adam M. Goldsmith, Fang Ke, Anukul T. Shenoy, J. Kelley Bentley, Ichiro Matsumoto, Marc B. Hershenson
Yiran Li, Mingyuan Han, Shilpi Singh, Haley A. Breckenridge, Jordan E. Kreger, Claudia C. Stroupe, Daniel A. Sawicky, Shiuhyang Kuo, Adam M. Goldsmith, Fang Ke, Anukul T. Shenoy, J. Kelley Bentley, Ichiro Matsumoto, Marc B. Hershenson
View: Text | PDF
Research Article Pulmonology

Tuft cells are required for a rhinovirus-induced asthma phenotype in immature mice

  • Text
  • PDF
Abstract

Infection of immature mice with rhinovirus (RV) induces an asthma-like phenotype consisting of type 2 inflammation, mucous metaplasia, eosinophilic inflammation, and airway hyperresponsiveness that is dependent on IL-25 and type 2 innate lymphoid cells (ILC2s). Doublecortin-like kinase 1–positive (DCLK1+) tuft cells are a major source of IL-25. We sought to determine the requirement of tuft cells for the RV-induced asthma phenotype in wild-type mice and mice deficient in Pou2f3, a transcription factor required for tuft cell development. C57BL/6J mice infected with RV-A1B on day 6 of life and RV-A2 on day 13 of life showed increased DCLK1+ tuft cells in the large airways. Compared with wild-type mice, RV-infected Pou2f3–/– mice showed reductions in IL-25 mRNA and protein expression, ILC2 expansion, type 2 cytokine expression, mucous metaplasia, lung eosinophils, and airway methacholine responsiveness. We conclude that airway tuft cells are required for the asthma phenotype observed in immature mice undergoing repeated RV infections. Furthermore, RV-induced tuft cell development provides a mechanism by which early-life viral infections could potentiate type 2 inflammatory responses to future infections.

Authors

Yiran Li, Mingyuan Han, Shilpi Singh, Haley A. Breckenridge, Jordan E. Kreger, Claudia C. Stroupe, Daniel A. Sawicky, Shiuhyang Kuo, Adam M. Goldsmith, Fang Ke, Anukul T. Shenoy, J. Kelley Bentley, Ichiro Matsumoto, Marc B. Hershenson

×

Figure 6

Pou2f3 deficiency blocks exaggerated mucus metaplasia in mice undergoing heterologous RV infection.

Options: View larger image (or click on image) Download as PowerPoint
Pou2f3 deficiency blocks exaggerated mucus metaplasia in mice undergoing...
Mice were inoculated with sham or RV1B on day 6 of life and sham or RV2 on day 13 of life. Lungs were harvested on day 20 and processed for histology and measurement of mRNA expression. (A and B) Lung sections were stained with PAS. (A) Large airways are shown, except for insets which show small airways. (B) The fraction of epithelium stained positively for PAS was quantified using NIH ImageJ software. Two to 3 airways were examined for each mouse. Scale bars: 200 μm and 100 μm (insets). (C) mRNA expression of the mucus-associated genes Muc5ac and Clca1. Data shown are mean ± SEM (n = 6 per group from 2 different experiments) and were analyzed by 1-way ANOVA. Group differences were evaluated by Tukey’s multiple-comparison test.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts