Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Longitudinal single-cell analysis of SARS-CoV-2–reactive B cells uncovers persistence of early-formed, antigen-specific clones
Lydia Scharf, Hannes Axelsson, Aikaterini Emmanouilidi, Nimitha R. Mathew, Daniel J. Sheward, Susannah Leach, Pauline Isakson, Ilya V. Smirnov, Emelie Marklund, Nicolae Miron, Lars-Magnus Andersson, Magnus Gisslén, Ben Murrell, Anna Lundgren, Mats Bemark, Davide Angeletti
Lydia Scharf, Hannes Axelsson, Aikaterini Emmanouilidi, Nimitha R. Mathew, Daniel J. Sheward, Susannah Leach, Pauline Isakson, Ilya V. Smirnov, Emelie Marklund, Nicolae Miron, Lars-Magnus Andersson, Magnus Gisslén, Ben Murrell, Anna Lundgren, Mats Bemark, Davide Angeletti
View: Text | PDF
Research Article COVID-19 Immunology

Longitudinal single-cell analysis of SARS-CoV-2–reactive B cells uncovers persistence of early-formed, antigen-specific clones

  • Text
  • PDF
Abstract

Understanding persistence and evolution of B cell clones after COVID-19 infection and vaccination is crucial for predicting responses against emerging viral variants and optimizing vaccines. Here, we collected longitudinal samples from patients with severe COVID-19 every third to seventh day during hospitalization and every third month after recovery. We profiled their antigen-specific immune cell dynamics by combining single-cell RNA-Seq, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq), and B cell receptor–Seq (BCR-Seq) with oligo-tagged antigen baits. While the proportion of Spike receptor binding domain–specific memory B cells (MBC) increased from 3 months after infection, the other Spike- and Nucleocapsid-specific B cells remained constant. All patients showed ongoing class switching and sustained affinity maturation of antigen-specific cells, and affinity maturation was not significantly increased early after vaccine. B cell analysis revealed a polyclonal response with limited clonal expansion; nevertheless, some clones detected during hospitalization, as plasmablasts, persisted for up to 1 year, as MBC. Monoclonal antibodies derived from persistent B cell families increased their binding and neutralization breadth and started recognizing viral variants by 3 months after infection. Overall, our findings provide important insights into the clonal evolution and dynamics of antigen-specific B cell responses in longitudinally sampled patients infected with COVID-19.

Authors

Lydia Scharf, Hannes Axelsson, Aikaterini Emmanouilidi, Nimitha R. Mathew, Daniel J. Sheward, Susannah Leach, Pauline Isakson, Ilya V. Smirnov, Emelie Marklund, Nicolae Miron, Lars-Magnus Andersson, Magnus Gisslén, Ben Murrell, Anna Lundgren, Mats Bemark, Davide Angeletti

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (5.33 MB)

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts