Background: Cardiorenal syndrome (CRS)—renal injury during heart failure (HF)—is linked to higher morbidity. Whether circulating extracellular vesicles (EVs) and their RNA cargo directly impact its pathogenesis remains unclear. Methods: We investigated the role of circulating EVs from patients with CRS on renal epithelial/endothelial cells using a microfluidic kidney-on-chip model (KOC). The small RNA cargo of circulating EVs was regressed against serum creatinine to prioritize subsets of functionally relevant EV miRNAs and their mRNA targets investigated using in silico pathway analysis, human genetics, and interrogation of expression in the KOC model and in renal tissue. The functional effects of EV-RNAs on kidney epithelial cells were experimentally validated.Results: Renal epithelial and endothelial cells in the KOC model exhibited uptake of EVs from HF patients. HF-CRS EVs led to higher expression of renal injury markers (IL18, LCN2, HAVCR1) relative to non-CRS EVs. 15 EV-miRNAs were associated with creatinine, targeting 1143 gene targets specifying pathways relevant to renal injury, including TGF beta and AMPK signaling. We observed directionally consistent changes in the expression of TGF beta pathway members (BMP6, FST, TIMP3) in the KOC model exposed to CRS EVs, which were validated in epithelial cells treated with corresponding inhibitors and mimics of miRNAs. A similar trend was observed in renal tissue with kidney injury. Mendelian randomization suggested a role for FST in renal function. Conclusion: Plasma EVs in CRS patients elicit adverse transcriptional and phenotypic responses in a KOC model by regulating biologically relevant pathways, suggesting a role for EVs in CRS.
Emeli Chatterjee, Rodosthenis S. Rodosthenous, Ville J. Kujala, Priyanka Gokulnath, Michail Spanos, H. Immo Lehmann, Getulio P de Oliveira-Jr, Mingjian Shi, Tyne W. Miller-Fleming, Guoping Li, Ionita Ghiran, Katia Karalis, JoAnn Lindenfeld, Jonathan D. Mosley, Emily S. Lau, Jennifer E. Ho, Quanhu Sheng, Ravi Shah, Saumya Das