Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Targeting a xenobiotic transporter to ameliorate vincristine-induced sensory neuropathy
Yang Li, … , Alex Sparreboom, Shuiying Hu
Yang Li, … , Alex Sparreboom, Shuiying Hu
Published June 22, 2023
Citation Information: JCI Insight. 2023;8(14):e164646. https://doi.org/10.1172/jci.insight.164646.
View: Text | PDF
Research Article Oncology

Targeting a xenobiotic transporter to ameliorate vincristine-induced sensory neuropathy

  • Text
  • PDF
Abstract

Vincristine is a widely used chemotherapeutic drug for the treatment of multiple malignant diseases that causes a dose-limiting peripheral neurotoxicity. There is no clinically effective preventative treatment for vincristine-induced sensory peripheral neurotoxicity (VIPN), and mechanistic details of this side effect remain poorly understood. We hypothesized that VIPN is dependent on transporter-mediated vincristine accumulation in dorsal root ganglion neurons. Using a xenobiotic transporter screen, we identified OATP1B3 as a neuronal transporter regulating the uptake of vincristine. In addition, genetic or pharmacological inhibition of the murine orthologue transporter OATP1B2 protected mice from various hallmarks of VIPN — including mechanical allodynia, thermal hyperalgesia, and changes in digital maximal action potential amplitudes and neuronal morphology — without negatively affecting plasma levels or antitumor effects of vincristine. Finally, we identified α-tocopherol from an untargeted metabolomics analysis as a circulating endogenous biomarker of neuronal OATP1B2 function, and it could serve as a companion diagnostic to guide dose selection of OATP1B-type transport modulators given in combination with vincristine to prevent VIPN. Collectively, our findings shed light on the fundamental basis of VIPN and provide a rationale for the clinical development of transporter inhibitors to prevent this debilitating side effect.

Authors

Yang Li, Thomas Drabison, Mahesh Nepal, Richard H. Ho, Alix F. Leblanc, Alice A. Gibson, Yan Jin, Wenjian Yang, Kevin M. Huang, Muhammad Erfan Uddin, Mingqing Chen, Duncan F. DiGiacomo, Xihui Chen, Sobia Razzaq, Jeffrey R. Tonniges, Dana M. McTigue, Alice S. Mims, Maryam B. Lustberg, Yijia Wang, Amanda B. Hummon, William E. Evans, Sharyn D. Baker, Guido Cavaletti, Alex Sparreboom, Shuiying Hu

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 755 175
PDF 148 29
Figure 185 6
Supplemental data 98 29
Citation downloads 112 0
Totals 1,298 239
Total Views 1,537

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts