Aberrant fibroblast function plays a key role in the pathogenesis of idiopathic pulmonary fibrosis, a devastating disease of unrelenting extracellular matrix deposition in response to lung injury. Platelet-derived growth factor α–positive (Pdgfra+) lipofibroblasts (LipoFBs) are essential for lung injury response and maintenance of a functional alveolar stem cell niche. Little is known about the effects of lung injury on LipoFB function. Here, we used single-cell RNA-Seq (scRNA-Seq) technology and PdgfraGFP lineage tracing to generate a transcriptomic profile of Pdgfra+ fibroblasts in normal and injured mouse lungs 14 days after bleomycin exposure, generating 11 unique transcriptomic clusters that segregated according to treatment. While normal and injured LipoFBs shared a common gene signature, injured LipoFBs acquired fibrogenic pathway activity with an attenuation of lipogenic pathways. In a 3D organoid model, injured Pdgfra+ fibroblast–supported organoids were morphologically distinct from those cultured with normal fibroblasts, and scRNA-Seq analysis suggested distinct transcriptomic changes in alveolar epithelia supported by injured Pdgfra+ fibroblasts. In summary, while LipoFBs in injured lung have not migrated from their niche and retain their lipogenic identity, they acquire a potentially reversible fibrogenic profile, which may alter the kinetics of epithelial regeneration and potentially contribute to dysregulated repair, leading to fibrosis.
Carol S. Trempus, Brian N. Papas, Maria I. Sifre, Carl D. Bortner, Erica Scappini, Charles J. Tucker, Xin Xu, Katina L. Johnson, Leesa J. Deterding, Jason G. Williams, Dylan J. Johnson, Jian-Liang Li, Deloris Sutton, Charan Ganta, Debabrata Mahapatra, Muhammad Arif, Abhishek Basu, Lenny Pommerolle, Resat Cinar, Anne K. Perl, Stavros Garantziotis
Proteomic and transcriptomic multiomics analyses reveal directional lipogenic and fibrogenic expression patterns in normal and injured