Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Mucociliary transport deficiency and disease progression in Syrian hamsters with SARS-CoV-2 infection
Qian Li, Kadambari Vijaykumar, Scott E. Phillips, Shah S. Hussain, Nha V. Huynh, Courtney M. Fernandez-Petty, Jacelyn E. Peabody Lever, Jeremy B. Foote, Janna Ren, Javier Campos-Gómez, Farah Abou Daya, Nathaniel W. Hubbs, Harrison Kim, Ezinwanne Onuoha, Evan R. Boitet, Lianwu Fu, Hui Min Leung, Linhui Yu, Thomas W. Detchemendy, Levi T. Schaefers, Jennifer L. Tipper, Lloyd J. Edwards, Sixto M. Leal Jr., Kevin S. Harrod, Guillermo J. Tearney, Steven M. Rowe
Qian Li, Kadambari Vijaykumar, Scott E. Phillips, Shah S. Hussain, Nha V. Huynh, Courtney M. Fernandez-Petty, Jacelyn E. Peabody Lever, Jeremy B. Foote, Janna Ren, Javier Campos-Gómez, Farah Abou Daya, Nathaniel W. Hubbs, Harrison Kim, Ezinwanne Onuoha, Evan R. Boitet, Lianwu Fu, Hui Min Leung, Linhui Yu, Thomas W. Detchemendy, Levi T. Schaefers, Jennifer L. Tipper, Lloyd J. Edwards, Sixto M. Leal Jr., Kevin S. Harrod, Guillermo J. Tearney, Steven M. Rowe
View: Text | PDF
Research Article COVID-19

Mucociliary transport deficiency and disease progression in Syrian hamsters with SARS-CoV-2 infection

  • Text
  • PDF
Abstract

Substantial clinical evidence supports the notion that ciliary function in the airways is important in COVID-19 pathogenesis. Although ciliary damage has been observed in both in vitro and in vivo models, the extent or nature of impairment of mucociliary transport (MCT) in in vivo models remains unknown. We hypothesize that SARS-CoV-2 infection results in MCT deficiency in the airways of golden Syrian hamsters that precedes pathological injury in lung parenchyma. Micro-optical coherence tomography was used to quantitate functional changes in the MCT apparatus. Both genomic and subgenomic viral RNA pathological and physiological changes were monitored in parallel. We show that SARS-CoV-2 infection caused a 67% decrease in MCT rate as early as 2 days postinfection (dpi) in hamsters, principally due to 79% diminished airway coverage of motile cilia. Correlating quantitation of physiological, virological, and pathological changes reveals steadily descending infection from the upper airways to lower airways to lung parenchyma within 7 dpi. Our results indicate that functional deficits of the MCT apparatus are a key aspect of COVID-19 pathogenesis, may extend viral retention, and could pose a risk factor for secondary infection. Clinically, monitoring abnormal ciliated cell function may indicate disease progression. Therapies directed toward the MCT apparatus deserve further investigation.

Authors

Qian Li, Kadambari Vijaykumar, Scott E. Phillips, Shah S. Hussain, Nha V. Huynh, Courtney M. Fernandez-Petty, Jacelyn E. Peabody Lever, Jeremy B. Foote, Janna Ren, Javier Campos-Gómez, Farah Abou Daya, Nathaniel W. Hubbs, Harrison Kim, Ezinwanne Onuoha, Evan R. Boitet, Lianwu Fu, Hui Min Leung, Linhui Yu, Thomas W. Detchemendy, Levi T. Schaefers, Jennifer L. Tipper, Lloyd J. Edwards, Sixto M. Leal Jr., Kevin S. Harrod, Guillermo J. Tearney, Steven M. Rowe

×

Figure 7

Summary of MCT pathogenesis and disease progression in hamsters.

Options: View larger image (or click on image) Download as PowerPoint
Summary of MCT pathogenesis and disease progression in hamsters.
Direct ...
Direct cytopathic effects of viral invasion and replication causes epithelium damage, including motile cilia loss and aberrant ciliary motion of residual cilia that results in MCT deficiency. Thickening of the mucus layer is likely due to the deficit in MCT, although increased mucus production by secretory cells also contributes. Delayed MCT and a thickened mucus layer contribute to viral retention, secondary infections (Aspergillus, as an example), and downstream pathogenesis. As viral titer and replication descend from proximal to distal airways over time, cilia loss induced by direct cytopathic effects of viral infection attenuates, whereas pathological injury likely via downstream mediators induced by infection increases. Images created with BioRender.com.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts