Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Establishment of a reproducible and minimally invasive ischemic stroke model in swine
Carlos Castaño, Marc Melià-Sorolla, Alexia García-Serran, Núria DeGregorio-Rocasolano, Maria Rosa García-Sort, María Hernandez-Pérez, Adrián Valls-Carbó, Osvaldo Pino, Jordi Grífols, Alba Iruela-Sánchez, Alicia Palomar-García, Josep Puig, Octavi Martí-Sistac, Antoni Dávalos, Teresa Gasull
Carlos Castaño, Marc Melià-Sorolla, Alexia García-Serran, Núria DeGregorio-Rocasolano, Maria Rosa García-Sort, María Hernandez-Pérez, Adrián Valls-Carbó, Osvaldo Pino, Jordi Grífols, Alba Iruela-Sánchez, Alicia Palomar-García, Josep Puig, Octavi Martí-Sistac, Antoni Dávalos, Teresa Gasull
View: Text | PDF
Resource and Technical Advance Neuroscience

Establishment of a reproducible and minimally invasive ischemic stroke model in swine

  • Text
  • PDF
Abstract

The need for advances in the management/treatment options for ischemic stroke patients requires that upcoming preclinical research uses animals with more human-like brain characteristics. The porcine brain is considered appropriate, although the presence of the rete mirabile (RM) prevents direct catheterization of the intracranial arteries to produce focal cerebral ischemia. To develop a reproducible minimally invasive porcine stroke model, a guide catheter and guide wire were introduced through the femoral artery until reaching the left RM. Using the pressure cooker technique, Squid-12 embolization material was deposited to fill, overflow, and occlude the left RM, the left internal carotid artery, and left circle of Willis wing up to the origins of the middle cerebral arteries (MCAs), mimicking the occlusion produced in the filament model in rodents. Longitudinal multimodal cerebral MRI was conducted to assess the brain damage and cerebral blood supply. The technique we describe here occluded up to the origins of the MCAs in 7 of 8 swine, inducing early damage 90 minutes after occlusion that later evolved to a large cerebral infarction and producing no mortality during the intervention. This minimally invasive ischemic stroke model in swine produced reproducible infarcts and shows translational features common to human stroke.

Authors

Carlos Castaño, Marc Melià-Sorolla, Alexia García-Serran, Núria DeGregorio-Rocasolano, Maria Rosa García-Sort, María Hernandez-Pérez, Adrián Valls-Carbó, Osvaldo Pino, Jordi Grífols, Alba Iruela-Sánchez, Alicia Palomar-García, Josep Puig, Octavi Martí-Sistac, Antoni Dávalos, Teresa Gasull

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,063 224
PDF 160 69
Figure 353 0
Supplemental data 128 11
Citation downloads 137 0
Totals 1,841 304
Total Views 2,145

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts