Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Establishment of a reproducible and minimally invasive ischemic stroke model in swine
Carlos Castaño, Marc Melià-Sorolla, Alexia García-Serran, Núria DeGregorio-Rocasolano, Maria Rosa García-Sort, María Hernandez-Pérez, Adrián Valls-Carbó, Osvaldo Pino, Jordi Grífols, Alba Iruela-Sánchez, Alicia Palomar-García, Josep Puig, Octavi Martí-Sistac, Antoni Dávalos, Teresa Gasull
Carlos Castaño, Marc Melià-Sorolla, Alexia García-Serran, Núria DeGregorio-Rocasolano, Maria Rosa García-Sort, María Hernandez-Pérez, Adrián Valls-Carbó, Osvaldo Pino, Jordi Grífols, Alba Iruela-Sánchez, Alicia Palomar-García, Josep Puig, Octavi Martí-Sistac, Antoni Dávalos, Teresa Gasull
View: Text | PDF
Resource and Technical Advance Neuroscience

Establishment of a reproducible and minimally invasive ischemic stroke model in swine

  • Text
  • PDF
Abstract

The need for advances in the management/treatment options for ischemic stroke patients requires that upcoming preclinical research uses animals with more human-like brain characteristics. The porcine brain is considered appropriate, although the presence of the rete mirabile (RM) prevents direct catheterization of the intracranial arteries to produce focal cerebral ischemia. To develop a reproducible minimally invasive porcine stroke model, a guide catheter and guide wire were introduced through the femoral artery until reaching the left RM. Using the pressure cooker technique, Squid-12 embolization material was deposited to fill, overflow, and occlude the left RM, the left internal carotid artery, and left circle of Willis wing up to the origins of the middle cerebral arteries (MCAs), mimicking the occlusion produced in the filament model in rodents. Longitudinal multimodal cerebral MRI was conducted to assess the brain damage and cerebral blood supply. The technique we describe here occluded up to the origins of the MCAs in 7 of 8 swine, inducing early damage 90 minutes after occlusion that later evolved to a large cerebral infarction and producing no mortality during the intervention. This minimally invasive ischemic stroke model in swine produced reproducible infarcts and shows translational features common to human stroke.

Authors

Carlos Castaño, Marc Melià-Sorolla, Alexia García-Serran, Núria DeGregorio-Rocasolano, Maria Rosa García-Sort, María Hernandez-Pérez, Adrián Valls-Carbó, Osvaldo Pino, Jordi Grífols, Alba Iruela-Sánchez, Alicia Palomar-García, Josep Puig, Octavi Martí-Sistac, Antoni Dávalos, Teresa Gasull

×

Figure 7

Time-course effect of stroke.

Options: View larger image (or click on image) Download as PowerPoint
Time-course effect of stroke.
(A–C) Time-course effect of stroke on the ...
(A–C) Time-course effect of stroke on the total serum levels of essential amino acids (EAA, n = 7), branched chain amino acids (BCAA, n = 7), and plasma HSC70 levels (n = 4, animals included are those with samples at all time points). (D) Representative Western blot image of plasma HSC70 levels of 2 pigs before (Pre) and 1 hour, 4 hours, and 1 day after the onset of stroke. (E) Diffusion tensor imaging (DTI) showing the white matter architectural complexity of the pig brain 90 minutes or 1 day after the stroke onset; color codes of the tract orientation are as follows: red for fibers crossing left-right, green for anterior-posterior, and blue for superior-inferior. At 90 minutes after stroke onset, the white matter tracts in the right and left hemisphere mirror each other. At 1 day after stroke onset, the left hemisphere superior-inferior tract structure shows damaged/thinner compared with the right contralateral hemisphere. *P < 0.05, **P < 0.01, ***P < 0.001 versus Pre, #P < 0.05 versus 1 hour (1-way ANOVA with Tukey post hoc test). Mean ± SD are shown.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts