Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Glutamine prevents acute kidney injury by modulating oxidative stress and apoptosis in tubular epithelial cells
Katharina Thomas, … , Jan Rossaint, Alexander Zarbock
Katharina Thomas, … , Jan Rossaint, Alexander Zarbock
Published September 15, 2022
Citation Information: JCI Insight. 2022;7(21):e163161. https://doi.org/10.1172/jci.insight.163161.
View: Text | PDF
Research Article Immunology Nephrology

Glutamine prevents acute kidney injury by modulating oxidative stress and apoptosis in tubular epithelial cells

  • Text
  • PDF
Abstract

Acute kidney injury (AKI) represents a common complication in critically ill patients that is associated with increased morbidity and mortality. In a murine AKI model induced by ischemia/reperfusion injury (IRI), we show that glutamine significantly decreases kidney damage and improves kidney function. We demonstrate that glutamine causes transcriptomic and proteomic reprogramming in murine renal tubular epithelial cells (TECs), resulting in decreased epithelial apoptosis, decreased neutrophil recruitment, and improved mitochondrial functionality and respiration provoked by an ameliorated oxidative phosphorylation. We identify the proteins glutamine gamma glutamyltransferase 2 (Tgm2) and apoptosis signal-regulating kinase (Ask1) as the major targets of glutamine in apoptotic signaling. Furthermore, the direct modulation of the Tgm2-HSP70 signalosome and reduced Ask1 activation resulted in decreased JNK activation, leading to diminished mitochondrial intrinsic apoptosis in TECs. Glutamine administration attenuated kidney damage in vivo during AKI and TEC viability in vitro under inflammatory or hypoxic conditions.

Authors

Katharina Thomas, Lisa Zondler, Nadine Ludwig, Marina Kardell, Corinna Lüneburg, Katharina Henke, Sina Mersmann, Andreas Margraf, Tilmann Spieker, Tobias Tekath, Ana Velic, Richard Holtmeier, Juliane Hermann, Vera Jankowski, Melanie Meersch, Dietmar Vestweber, Martin Westphal, Johannes Roth, Michael A. Schäfers, John A. Kellum, Clifford A. Lowell, Jan Rossaint, Alexander Zarbock

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,909 2,866
PDF 183 239
Figure 417 1
Supplemental data 69 23
Citation downloads 65 0
Totals 2,643 3,129
Total Views 5,772

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts