Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Cancer-associated fibroblasts reuse cancer-derived lactate to maintain a fibrotic and immunosuppressive microenvironment in pancreatic cancer
Fumimasa Kitamura, Takashi Semba, Noriko Yasuda-Yoshihara, Kosuke Yamada, Akiho Nishimura, Juntaro Yamasaki, Osamu Nagano, Tadahito Yasuda, Atsuko Yonemura, Yilin Tong, Huaitao Wang, Takahiko Akiyama, Kazuki Matsumura, Norio Uemura, Rumi Itoyama, Luke Bu, Lingfeng Fu, Xichen Hu, Feng Wei, Kosuke Mima, Katsunori Imai, Hiromitsu Hayashi, Yo-ichi Yamashita, Yuji Miyamoto, Hideo Baba, Takatsugu Ishimoto
Fumimasa Kitamura, Takashi Semba, Noriko Yasuda-Yoshihara, Kosuke Yamada, Akiho Nishimura, Juntaro Yamasaki, Osamu Nagano, Tadahito Yasuda, Atsuko Yonemura, Yilin Tong, Huaitao Wang, Takahiko Akiyama, Kazuki Matsumura, Norio Uemura, Rumi Itoyama, Luke Bu, Lingfeng Fu, Xichen Hu, Feng Wei, Kosuke Mima, Katsunori Imai, Hiromitsu Hayashi, Yo-ichi Yamashita, Yuji Miyamoto, Hideo Baba, Takatsugu Ishimoto
View: Text | PDF
Research Article Metabolism Oncology

Cancer-associated fibroblasts reuse cancer-derived lactate to maintain a fibrotic and immunosuppressive microenvironment in pancreatic cancer

  • Text
  • PDF
Abstract

Glycolysis is highly enhanced in pancreatic ductal adenocarcinoma (PDAC) cells; thus, glucose restrictions are imposed on nontumor cells in the PDAC tumor microenvironment (TME). However, little is known about how such glucose competition alters metabolism and confers phenotypic changes in stromal cells in the TME. Here, we report that cancer-associated fibroblasts (CAFs) with restricted glucose availability utilize lactate from glycolysis-enhanced cancer cells as a fuel and exert immunosuppressive activity in the PDAC TME. The expression of lactate dehydrogenase A (LDHA), which regulates lactate production, was a poor prognostic factor for patients with PDAC, and LDHA depletion suppressed tumor growth in a CAF-rich murine PDAC model. Coculture of CAFs with PDAC cells revealed that most of the glucose was taken up by the tumor cells and that CAFs consumed lactate via monocarboxylate transporter 1 to enhance proliferation through the TCA cycle. Moreover, lactate-stimulated CAFs upregulated IL-6 expression and suppressed cytotoxic immune cell activity synergistically with lactate. Finally, the LDHA inhibitor FX11 reduced tumor growth and improved antitumor immunity in CAF-rich PDAC tumors. Our study provides insight regarding the crosstalk among tumor cells, CAFs, and immune cells mediated by lactate and offers therapeutic strategies for targeting LDHA enzymatic activity in PDAC cells.

Authors

Fumimasa Kitamura, Takashi Semba, Noriko Yasuda-Yoshihara, Kosuke Yamada, Akiho Nishimura, Juntaro Yamasaki, Osamu Nagano, Tadahito Yasuda, Atsuko Yonemura, Yilin Tong, Huaitao Wang, Takahiko Akiyama, Kazuki Matsumura, Norio Uemura, Rumi Itoyama, Luke Bu, Lingfeng Fu, Xichen Hu, Feng Wei, Kosuke Mima, Katsunori Imai, Hiromitsu Hayashi, Yo-ichi Yamashita, Yuji Miyamoto, Hideo Baba, Takatsugu Ishimoto

×

Figure 4

CAFs use lactate as a fuel via the TCA cycle.

Options: View larger image (or click on image) Download as PowerPoint
CAFs use lactate as a fuel via the TCA cycle.
(A) Growth assay performed...
(A) Growth assay performed with human CAFs with or without lactate in glucose-free medium (n = 3). (B) Growth curve of MCT1-KD CAFs stimulated with lactate (n = 3). (C) Growth assay performed with human CAFs with or without lactate ± AZD3965 in glucose-free medium (n = 3). (D) Comprehensive metabolite analysis of CAFs in the presence of lactate in glucose metabolism (n = 3). (E) Comprehensive metabolite analysis of CAFs in the presence of lactate in the TCA cycle (n = 3). (F) Oxygen consumption rate (OCR) of human CAFs after 24 hours of lactate stimulation (n = 5). Box plots show the interquartile range (box), median (line), and minimum and maximum (whiskers). (G) Isotopologue distribution of metabolites associated with the TCA cycle in CAFs treated with 13C-labeled or unlabeled lactate. *P < 0.05; **P < 0.01. A Student’s t test was used to compare continuous variables between 2 groups. One-way ANOVA followed by Tukey’s multiple-comparison test was used to compare multiple groups.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts