Pulmonary fibrosis is a chronic and progressive interstitial lung disease associated with the decay of pulmonary function, which leads to a fatal outcome. As an essential epigenetic regulator of DNA methylation, the involvement of ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) in fibroblast activation remains largely undefined in pulmonary fibrosis. In the present study, we found that TGF-β1–mediated upregulation of UHRF1 repressed beclin 1 via methylated induction of its promoter, which finally resulted in fibroblast activation and lung fibrosis both in vitro and in vivo. Moreover, knockdown of UHRF1 significantly arrested fibroblast proliferation and reactivated beclin 1 in lung fibroblasts. Thus, intravenous administration of UHRF1 siRNA–loaded liposomes significantly protected mice against experimental pulmonary fibrosis. Accordingly, our data suggest that UHRF1 might be a novel potential therapeutic target in the pathogenesis of pulmonary fibrosis.
Demin Cheng, Yue Wang, Ziwei Li, Haojie Xiong, Wenqing Sun, Sichuan Xi, Siyun Zhou, Yi Liu, Chunhui Ni
Usage data is cumulative from December 2022 through December 2023.
Usage | JCI | PMC |
---|---|---|
Text version | 1,349 | 517 |
169 | 192 | |
Figure | 396 | 17 |
Supplemental data | 88 | 32 |
Citation downloads | 35 | 0 |
Totals | 2,037 | 758 |
Total Views | 2,795 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.