Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Adenylyl cyclase isoform 1 contributes to sinoatrial node automaticity via functional microdomains
Lu Ren, … , Manuel F. Navedo, Nipavan Chiamvimonvat
Lu Ren, … , Manuel F. Navedo, Nipavan Chiamvimonvat
Published November 22, 2022
Citation Information: JCI Insight. 2022;7(22):e162602. https://doi.org/10.1172/jci.insight.162602.
View: Text | PDF
Research Article Cardiology

Adenylyl cyclase isoform 1 contributes to sinoatrial node automaticity via functional microdomains

  • Text
  • PDF
Abstract

Sinoatrial node (SAN) cells are the heart’s primary pacemaker. Their activity is tightly regulated by β-adrenergic receptor (β-AR) signaling. Adenylyl cyclase (AC) is a key enzyme in the β-AR pathway that catalyzes the production of cAMP. There are current gaps in our knowledge regarding the dominant AC isoforms and the specific roles of Ca2+-activated ACs in the SAN. The current study tests the hypothesis that distinct AC isoforms are preferentially expressed in the SAN and compartmentalize within microdomains to orchestrate heart rate regulation during β-AR signaling. In contrast to atrial and ventricular myocytes, SAN cells express a diverse repertoire of ACs, with ACI as the predominant Ca2+-activated isoform. Although ACI-KO (ACI–/–) mice exhibit normal cardiac systolic or diastolic function, they experience SAN dysfunction. Similarly, SAN-specific CRISPR/Cas9-mediated gene silencing of ACI results in sinus node dysfunction. Mechanistically, hyperpolarization-activated cyclic nucleotide-gated 4 (HCN4) channels form functional microdomains almost exclusively with ACI, while ryanodine receptor and L-type Ca2+ channels likely compartmentalize with ACI and other AC isoforms. In contrast, there were no significant differences in T-type Ca2+ and Na+ currents at baseline or after β-AR stimulation between WT and ACI–/– SAN cells. Due to its central characteristic feature as a Ca2+-activated isoform, ACI plays a unique role in sustaining the rise of local cAMP and heart rates during β-AR stimulation. The findings provide insights into the critical roles of the Ca2+-activated isoform of AC in sustaining SAN automaticity that is distinct from contractile cardiomyocytes.

Authors

Lu Ren, Phung N. Thai, Raghavender Reddy Gopireddy, Valeriy Timofeyev, Hannah A. Ledford, Ryan L. Woltz, Seojin Park, Jose L. Puglisi, Claudia M. Moreno, Luis Fernando Santana, Alana C. Conti, Michael I. Kotlikoff, Yang Kevin Xiang, Vladimir Yarov-Yarovoy, Manuela Zaccolo, Xiao-Dong Zhang, Ebenezer N. Yamoah, Manuel F. Navedo, Nipavan Chiamvimonvat

×

Figure 7

ACI–/– SAN cells show a lack of response of If to β-AR stimulation.

Options: View larger image (or click on image) Download as PowerPoint

ACI–/– SAN cells show a lack of response of If to β-AR stimulation.
(A)...
(A) Representative traces of If for WT and ACI–/– SAN cells before and after ISO administration. Zero-current levels are shown using dotted lines. The inset shows a diagram of the voltage-clamp protocol from –140 mV to –40 mV in 10 mV increments from a holding potential of –35 mV. (B) Superimposed individual If traces from each group at –70 mV at baseline and after ISO. (C) Summary data of current density at –70 mV. (D) Normalized conductance-voltage relationship before and after ISO application, fitted using a Boltzmann function. (E–I) Summary data for half-activation voltage (V1/2) (E), slope factor (F), τfast (G), τslow (H), and time constants of deactivation (I). n = 10–14 cells from n = 4–5 mice per group. Data are expressed as mean ± SEM in C and E–I. *P < 0.05 and **P < 0.01 by 2-way ANOVA, followed by Holm-Sidak multiple-comparison post hoc analyses. Results from normality tests are shown in Supplemental Table 2.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts