Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Impaired Treg-DC interactions contribute to autoimmunity in leukocyte adhesion deficiency type 1
Tanja Klaus, Alicia S. Wilson, Elisabeth Vicari, Eva Hadaschik, Matthias Klein, Sara Salome Clara Helbich, Nadine Kamenjarin, Katrin Hodapp, Jenny Schunke, Maximilian Haist, Florian Butsch, Hans Christian Probst, Alexander H. Enk, Karsten Mahnke, Ari Waisman, Monika Bednarczyk, Matthias Bros, Tobias Bopp, Stephan Grabbe
Tanja Klaus, Alicia S. Wilson, Elisabeth Vicari, Eva Hadaschik, Matthias Klein, Sara Salome Clara Helbich, Nadine Kamenjarin, Katrin Hodapp, Jenny Schunke, Maximilian Haist, Florian Butsch, Hans Christian Probst, Alexander H. Enk, Karsten Mahnke, Ari Waisman, Monika Bednarczyk, Matthias Bros, Tobias Bopp, Stephan Grabbe
View: Text | PDF
Research Article

Impaired Treg-DC interactions contribute to autoimmunity in leukocyte adhesion deficiency type 1

  • Text
  • PDF
Abstract

Leukocyte adhesion deficiency type 1 (LAD-1) is a rare disease resulting from mutations in the gene encoding for the common β-chain of the β2-integrin family (CD18). The most prominent clinical symptoms are profound leukocytosis and high susceptibility to infections. Patients with LAD-1 are prone to develop autoimmune diseases, but the molecular and cellular mechanisms that result in coexisting immunodeficiency and autoimmunity are still unresolved. CD4+FOXP3+ Treg are known for their essential role in preventing autoimmunity. To understand the role of Treg in LAD-1 development and manifestation of autoimmunity, we generated mice specifically lacking CD18 on Treg (CD18Foxp3), resulting in defective LFA-1 expression. Here, we demonstrate a crucial role of LFA-1 on Treg to maintain immune homeostasis by modifying T cell–DC interactions and CD4+ T cell activation. Treg-specific CD18 deletion did not impair Treg migration into extralymphatic organs, but it resulted in shorter interactions of Treg with DC. In vivo, CD18Foxp3 mice developed spontaneous hyperplasia in lymphatic organs and diffuse inflammation of the skin and in multiple internal organs. Thus, LFA-1 on Treg is required for the maintenance of immune homeostasis.

Authors

Tanja Klaus, Alicia S. Wilson, Elisabeth Vicari, Eva Hadaschik, Matthias Klein, Sara Salome Clara Helbich, Nadine Kamenjarin, Katrin Hodapp, Jenny Schunke, Maximilian Haist, Florian Butsch, Hans Christian Probst, Alexander H. Enk, Karsten Mahnke, Ari Waisman, Monika Bednarczyk, Matthias Bros, Tobias Bopp, Stephan Grabbe

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 862 214
PDF 123 39
Figure 302 16
Supplemental data 63 7
Citation downloads 103 0
Totals 1,453 276
Total Views 1,729

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts