Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Spatial metabolomics reveals upregulation of several pyrophosphate-producing pathways in cortical bone of Hyp mice
Achim Buck, … , Reinhold G. Erben, Axel Walch
Achim Buck, … , Reinhold G. Erben, Axel Walch
Published October 24, 2022
Citation Information: JCI Insight. 2022;7(20):e162138. https://doi.org/10.1172/jci.insight.162138.
View: Text | PDF
Resource and Technical Advance Bone biology

Spatial metabolomics reveals upregulation of several pyrophosphate-producing pathways in cortical bone of Hyp mice

  • Text
  • PDF
Abstract

Patients with the renal phosphate–wasting disease X-linked hypophosphatemia (XLH) and Hyp mice, the murine homolog of XLH, are characterized by loss-of-function mutations in phosphate-regulating endopeptidase homolog X-linked (PHEX), leading to excessive secretion of the bone-derived phosphotropic hormone FGF23. The mineralization defect in patients with XLH and Hyp mice is caused by a combination of hypophosphatemia and local accumulation of mineralization-inhibiting molecules in bone. However, the mechanism by which PHEX deficiency regulates bone cell metabolism remains elusive. Here, we used spatial metabolomics by employing matrix-assisted laser desorption/ionization (MALDI) Fourier-transform ion cyclotron resonance mass spectrometry imaging (MSI) of undecalcified bone cryosections to characterize in situ metabolic changes in bones of Hyp mice in a holistic, unbiased manner. We found complex changes in Hyp bone metabolism, including perturbations in pentose phosphate, purine, pyrimidine, and phospholipid metabolism. Importantly, our study identified an upregulation of several biochemical pathways involved in intra- and extracellular production of the mineralization inhibitor pyrophosphate in the bone matrix of Hyp mice. Our data emphasize the utility of MSI–based spatial metabolomics in bone research and provide holistic in situ insights as to how Phex deficiency–induced changes in biochemical pathways in bone cells are linked to impaired bone mineralization.

Authors

Achim Buck, Verena M. Prade, Thomas Kunzke, Reinhold G. Erben, Axel Walch

×

Figure 2

Metabolic difference of the cortical bone in WT mice and Hyp mice.

Options: View larger image (or click on image) Download as PowerPoint
Metabolic difference of the cortical bone in WT mice and Hyp mice.
(A) S...
(A) Schematic representation of the region of interest (ROI) analyzed in WT (white) and Hyp (red) femoral shafts. The ROI includes mineralized bone and osteoid. (B) Juxtaposition of the overall mean spectrum from WT and Hyp cortical bone ROIs selected in A, represented as mean intensity and intensity difference. (C) pLSA score plot revealing metabolic differences between cortical bone ROIs of WT and Hyp mice (n = 5 mice per group). Each data point in the pLSA score plot represents the mean spectrum of an annotated ROI from 1 mouse bone tissue section. Bone marrow was included as a control and is metabolically similar between WT and Hyp mice. Scale bar: 200 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts