Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Dicarbonyl-modified lipoproteins contribute to proteinuric kidney injury
Jianyong Zhong, Hai-Chun Yang, Elaine L. Shelton, Taiji Matsusaka, Amanda J. Clark, Valery Yermalitsky, Zahra Mashhadi, Linda S. May-Zhang, MacRae F. Linton, Agnes B. Fogo, Annet Kirabo, Sean S. Davies, Valentina Kon
Jianyong Zhong, Hai-Chun Yang, Elaine L. Shelton, Taiji Matsusaka, Amanda J. Clark, Valery Yermalitsky, Zahra Mashhadi, Linda S. May-Zhang, MacRae F. Linton, Agnes B. Fogo, Annet Kirabo, Sean S. Davies, Valentina Kon
View: Text | PDF
Research Article Nephrology

Dicarbonyl-modified lipoproteins contribute to proteinuric kidney injury

  • Text
  • PDF
Abstract

Lipoprotein modification by reactive dicarbonyls, including isolevuglandin (IsoLG), produces dysfunctional particles. Kidneys participate in lipoprotein metabolism, including tubular uptake. However, the process beyond the proximal tubule is unclear, as is the effect of kidney injury on this pathway. We found that patients and animals with proteinuric injury have increased urinary apolipoprotein AI (apoAI), IsoLG, and IsoLG adduct enrichment of the urinary apoAI fraction compared with other proteins. Proteinuric mice, induced by podocyte-specific injury, showed more tubular absorption of IsoLG-apoAI and increased expression of lipoprotein transporters in proximal tubular cells compared with uninjured animals. Renal lymph reflects composition of the interstitial compartment and showed increased apoAI and IsoLG in proteinuric animals, supporting a tubular cell-interstitium-lymph pathway for renal handling of lipoproteins. IsoLG-modified apoAI was not only a marker of renal injury but also directly damaged renal cells. IsoLG-apoAI increased inflammatory cytokines in cultured tubular epithelial cells (TECs), activated lymphatic endothelial cells (LECs), and caused greater contractility of renal lymphatic vessels than unmodified apoAI. In vivo, inhibition of IsoLG by a dicarbonyl scavenger reduced both albuminuria and urinary apoAI and decreased TEC and LEC injury, lymphangiogenesis, and interstitial fibrosis. Our results indicate that IsoLG-modified apoAI is, to our knowledge, a novel pathogenic mediator and therapeutic target in kidney disease.

Authors

Jianyong Zhong, Hai-Chun Yang, Elaine L. Shelton, Taiji Matsusaka, Amanda J. Clark, Valery Yermalitsky, Zahra Mashhadi, Linda S. May-Zhang, MacRae F. Linton, Agnes B. Fogo, Annet Kirabo, Sean S. Davies, Valentina Kon

×

Figure 4

Distinct tubular uptake of apoAI versus IsoLG-apoAI.

Options: View larger image (or click on image) Download as PowerPoint
Distinct tubular uptake of apoAI versus IsoLG-apoAI.
(A) Cultured TECs e...
(A) Cultured TECs exposed to IsoLG-apoAI showed higher expression of ABCA1 and SRBI versus apoAI. (B) TECs took up more IsoLG-apoAI versus apoAI. Scale bar: 50 μm. Knockdown of either ABCA1 or SRBI (C and D) reduced TEC uptake of apoAI but not IsoLG-apoAI. (E) In TECs exposed to apoAI, knockdown of ABCA1 or SRBI decreased expression of the other transporter. (F) In TECs exposed to IsoLG-apoAI, ABCA1 knockdown significantly increased SRBI expression. SRBI siRNA significantly increased ABCA1 expression. (G) Knockdown of both ABCA1 and SRBI reduced cellular uptake IsoLG-apoAI. In vitro, experiments were performed independently 3 times with 3 wells per treatment. Data represent mean ± SEM. Overall statistical difference determined by Kruskal-Wallis test and pairwise difference by Wilcoxon rank sum test followed by Bonferroni correction on P values. *P < 0.05, **P < 0.01, ***P < 0.001.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts