Lentiviral vector–based dendritic cell vaccines induce protective T cell responses against viral infection and cancer in animal models. In this study, we tested whether preventative and therapeutic vaccination could be achieved by direct injection of antigen-expressing lentiviral vector, obviating the need for ex vivo transduction of dendritic cells. Injected lentiviral vector preferentially transduced splenic dendritic cells and resulted in long-term expression. Injection of a lentiviral vector encoding an MHC class I–restricted T cell epitope of lymphocytic choriomeningitis virus (LCMV) and CD40 ligand induced an antigen-specific cytolytic CD8+ T lymphocyte response that protected the mice from infection. The injection of chronically infected mice with a lentiviral vector encoding LCMV MHC class I and II T cell epitopes and a soluble programmed cell death 1 microbody rapidly cleared the virus. Vaccination by direct injection of lentiviral vector was more effective in sterile alpha motif and HD-domain containing protein 1–knockout (SAMHD1-knockout) mice, suggesting that lentiviral vectors containing Vpx, a lentiviral protein that increases the efficiency of dendritic cell transduction by inducing the degradation of SAMHD1, would be an effective strategy for the treatment of chronic disease in humans.
Takuya Tada, Thomas D. Norton, Rebecca Leibowitz, Nathaniel R. Landau
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 754 | 282 |
89 | 49 | |
Figure | 220 | 3 |
Supplemental data | 33 | 4 |
Citation downloads | 51 | 0 |
Totals | 1,147 | 338 |
Total Views | 1,485 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.