Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Multiparametric MRI to quantify disease and treatment response in mice with myeloproliferative neoplasms
Tanner H. Robison, … , Brian D. Ross, Gary D. Luker
Tanner H. Robison, … , Brian D. Ross, Gary D. Luker
Published August 23, 2022
Citation Information: JCI Insight. 2022;7(19):e161457. https://doi.org/10.1172/jci.insight.161457.
View: Text | PDF
Resource and Technical Advance Bone biology Oncology

Multiparametric MRI to quantify disease and treatment response in mice with myeloproliferative neoplasms

  • Text
  • PDF
Abstract

Histopathology, the standard method to assess BM in hematologic malignancies such as myeloproliferative neoplasms (MPNs), suffers from notable limitations in both research and clinical settings. BM biopsies in patients fail to detect disease heterogeneity, may yield a nondiagnostic sample, and cannot be repeated frequently in clinical oncology. Endpoint histopathology precludes monitoring disease progression and response to therapy in the same mouse over time, missing likely variations among mice. To overcome these shortcomings, we used MRI to measure changes in cellularity, macromolecular constituents, and fat versus hematopoietic cells in BM using diffusion-weighted imaging (DWI), magnetization transfer, and chemical shift–encoded fat imaging. Combining metrics from these imaging parameters revealed dynamic alterations in BM following myeloablative radiation and transplantation. In a mouse MPLW515L BM transplant model of MPN, MRI detected effects of a JAK2 inhibitor, ruxolitinib, within 5 days of initiating treatment and identified differing kinetics of treatment responses in subregions of the tibia. Histopathology validated the MRI results for BM composition and heterogeneity. Anatomic MRI scans also showed reductions in spleen volume during treatment. These findings establish an innovative, clinically translatable MRI approach to quantify spatial and temporal changes in BM in MPN.

Authors

Tanner H. Robison, Manisha Solipuram, Kevin Heist, Ghoncheh Amouzandeh, Winston Y. Lee, Brock A. Humphries, Johanna M. Buschhaus, Avinash Bevoor, Anne Zhang, Kathryn E. Luker, Kristen Pettit, Moshe Talpaz, Dariya Malyarenko, Thomas L. Chenevert, Brian D. Ross, Gary D. Luker

×

Usage data is cumulative from August 2022 through January 2023.

Usage JCI PMC
Text version 2,881 21
PDF 665 6
Figure 371 0
Supplemental data 49 0
Citation downloads 51 0
Totals 4,017 27
Total Views 4,044

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts