Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Immune checkpoint activity regulates polycystic kidney disease progression
Emily K. Kleczko, Dustin T. Nguyen, Kenneth H. Marsh, Colin D. Bauer, Amy S. Li, Marie-Louise T. Monaghan, Michael D. Berger, Seth B. Furgeson, Berenice Y. Gitomer, Michel B. Chonchol, Eric T. Clambey, Kurt A. Zimmerman, Raphael A. Nemenoff, Katharina Hopp
Emily K. Kleczko, Dustin T. Nguyen, Kenneth H. Marsh, Colin D. Bauer, Amy S. Li, Marie-Louise T. Monaghan, Michael D. Berger, Seth B. Furgeson, Berenice Y. Gitomer, Michel B. Chonchol, Eric T. Clambey, Kurt A. Zimmerman, Raphael A. Nemenoff, Katharina Hopp
View: Text | PDF
Research Article Nephrology

Immune checkpoint activity regulates polycystic kidney disease progression

  • Text
  • PDF
Abstract

Innate and adaptive immune cells modulate the severity of autosomal dominant polycystic kidney disease (ADPKD), a common kidney disease with inadequate treatment options. ADPKD has parallels with cancer, in which immune checkpoint inhibitors have been shown to reactivate CD8+ T cells and slow tumor growth. We have previously shown that in PKD, CD8+ T cell loss worsens disease. This study used orthologous early-onset and adult-onset ADPKD models (Pkd1 p.R3277C) to evaluate the role of immune checkpoints in PKD. Flow cytometry of kidney cells showed increased levels of programmed cell death protein 1 (PD-1)/cytotoxic T lymphocyte associated protein 4 (CTLA-4) on T cells and programmed cell death ligand 1 (PD-L1)/CD80 on macrophages and epithelial cells in Pkd1RC/RC mice versus WT, paralleling disease severity. PD-L1/CD80 was also upregulated in ADPKD human cells and patient kidney tissue versus controls. Genetic PD-L1 loss or treatment with an anti–PD-1 antibody did not impact PKD severity in early-onset or adult-onset ADPKD models. However, treatment with anti–PD-1 plus anti–CTLA-4, blocking 2 immune checkpoints, improved PKD outcomes in adult-onset ADPKD mice; neither monotherapy altered PKD severity. Combination therapy resulted in increased kidney CD8+ T cell numbers/activation and decreased kidney regulatory T cell numbers correlative with PKD severity. Together, our data suggest that immune checkpoint activation is an important feature of and potential novel therapeutic target in ADPKD.

Authors

Emily K. Kleczko, Dustin T. Nguyen, Kenneth H. Marsh, Colin D. Bauer, Amy S. Li, Marie-Louise T. Monaghan, Michael D. Berger, Seth B. Furgeson, Berenice Y. Gitomer, Michel B. Chonchol, Eric T. Clambey, Kurt A. Zimmerman, Raphael A. Nemenoff, Katharina Hopp

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,196 418
PDF 205 64
Figure 486 17
Supplemental data 56 36
Citation downloads 104 0
Totals 2,047 535
Total Views 2,582

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts