Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Genetic inhibition of serum glucocorticoid kinase 1 prevents obesity-related atrial fibrillation
Aneesh Bapat, … , Saumya Das, David Milan
Aneesh Bapat, … , Saumya Das, David Milan
Published August 23, 2022
Citation Information: JCI Insight. 2022;7(19):e160885. https://doi.org/10.1172/jci.insight.160885.
View: Text | PDF
Research Article Cardiology Metabolism

Genetic inhibition of serum glucocorticoid kinase 1 prevents obesity-related atrial fibrillation

  • Text
  • PDF
Abstract

Obesity is an important risk factor for atrial fibrillation (AF), but a better mechanistic understanding of obesity-related atrial fibrillation is required. Serum glucocorticoid kinase 1 (SGK1) is a kinase positioned within multiple obesity-related pathways, and prior work has shown a pathologic role of SGK1 signaling in ventricular arrhythmias. We validated a mouse model of obesity-related AF using wild-type mice fed a high-fat diet. RNA sequencing of atrial tissue demonstrated substantial differences in gene expression, with enrichment of multiple SGK1-related pathways, and we showed upregulated of SGK1 transcription, activation, and signaling in obese atria. Mice expressing a cardiac specific dominant-negative SGK1 were protected from obesity-related AF, through effects on atrial electrophysiology, action potential characteristics, structural remodeling, inflammation, and sodium current. Overall, this study demonstrates the promise of targeting SGK1 in a mouse model of obesity-related AF.

Authors

Aneesh Bapat, Guoping Li, Ling Xiao, Ashish Yeri, Maarten Hulsmans, Jana Grune, Masahiro Yamazoe, Maximilian J. Schloss, Yoshiko Iwamoto, Justin Tedeschi, Xinyu Yang, Matthias Nahrendorf, Anthony Rosenzweig, Patrick T. Ellinor, Saumya Das, David Milan

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 790 224
PDF 114 65
Figure 290 0
Table 92 0
Supplemental data 39 14
Citation downloads 71 0
Totals 1,396 303
Total Views 1,699

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts