Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
A gut-oral microbiome–driven axis controls oropharyngeal candidiasis through retinoic acid
Felix E.Y. Aggor, Martinna Bertolini, Chunsheng Zhou, Tiffany C. Taylor, Darryl A. Abbott, Javonn Musgrove, Vincent M. Bruno, Timothy W. Hand, Sarah L. Gaffen
Felix E.Y. Aggor, Martinna Bertolini, Chunsheng Zhou, Tiffany C. Taylor, Darryl A. Abbott, Javonn Musgrove, Vincent M. Bruno, Timothy W. Hand, Sarah L. Gaffen
View: Text | PDF
Research Article Immunology

A gut-oral microbiome–driven axis controls oropharyngeal candidiasis through retinoic acid

  • Text
  • PDF
Abstract

A side effect of antibiotics is outgrowth of the opportunistic fungus Candida albicans in the oropharynx (oropharyngeal candidiasis, OPC). IL-17 signaling is vital for immunity to OPC, but how the microbiome impacts antifungal immunity is not well understood. Mice in standard specific pathogen–free (SPF) conditions are resistant to OPC, whereas we show that germ-free (GF) or antibiotic-treated mice are susceptible. Oral type 17 cells and IL-17–dependent responses were impaired in antibiotic-treated and GF mice. Susceptibility could be rescued in GF mice by mono-colonization with segmented filamentous bacterium (SFB), an intestine-specific constituent of the microbiota. SFB protection was accompanied by restoration of oral IL-17+CD4+ T cells and gene signatures characteristic of IL-17 signaling. Additionally, RNA-Seq revealed induction of genes in the retinoic acid (RA) and RA receptor–α (RARα) pathway. Administration of RA rescued immunity to OPC in microbiome-depleted or GF mice, while RAR inhibition caused susceptibility in immunocompetent animals. Surprisingly, immunity to OPC was independent of serum amyloids. Moreover, RAR inhibition did not alter oral type 17 cytokine levels. Thus, mono-colonization with a component of the intestinal microflora confers protection against OPC by type 17 and RA/RARα, which act in parallel to promote antifungal immunity. In principle, manipulation of the microbiome could be harnessed to maintain antifungal immunity.

Authors

Felix E.Y. Aggor, Martinna Bertolini, Chunsheng Zhou, Tiffany C. Taylor, Darryl A. Abbott, Javonn Musgrove, Vincent M. Bruno, Timothy W. Hand, Sarah L. Gaffen

×

Figure 2

Mono-colonization with SFB induces protective responses to oral candidiasis in GF mice.

Options: View larger image (or click on image) Download as PowerPoint
Mono-colonization with SFB induces protective responses to oral candidia...
(A) The indicated mice (SPF or GF) were gavaged with SFB or PBS. After 14 days, mice were infected orally with C. albicans and fungal burdens assessed at day 5 by plating and CFU enumeration. n = 4–15 mice/group. Left: Geometric mean ± SD and analyzed by ANOVA and Tukey’s multiple comparisons test. Data pooled from 3 experiments. Right: Percentage clearance (number of mice with detectable fungal load/total mice). (B) WT-SPF mice were treated with antibiotics in drinking water or left untreated for 7 days. Fecal SFB content was analyzed by qPCR and normalized against total fecal bacterial content. Data from 1 experiment. (C and D) RNA from whole tongue at day 2 p.i. was subjected to qPCR for the indicated genes. Graphs show mean ± SEM and data were analyzed by ANOVA and Tukey’s multiple comparisons test. Data pooled from 2 experiments. *P < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts