Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

mRNA-1273 vaccination protects against SARS-CoV-2–elicited lung inflammation in nonhuman primates
Adam T. Waickman, … , Jeffrey R. Currier, Robert Seder
Adam T. Waickman, … , Jeffrey R. Currier, Robert Seder
Published June 2, 2022
Citation Information: JCI Insight. 2022;7(13):e160039. https://doi.org/10.1172/jci.insight.160039.
View: Text | PDF
Research Article COVID-19 Immunology

mRNA-1273 vaccination protects against SARS-CoV-2–elicited lung inflammation in nonhuman primates

  • Text
  • PDF
Abstract

Vaccine-elicited SARS-CoV-2 antibody responses are an established correlate of protection against viral infection in humans and nonhuman primates. However, it is less clear that vaccine-induced immunity is able to limit infection-elicited inflammation in the lower respiratory tract. To assess this, we collected bronchoalveolar lavage fluid samples after SARS-CoV-2 strain USA-WA1/2020 challenge from rhesus macaques vaccinated with mRNA-1273 in a dose-reduction study. Single-cell transcriptomic profiling revealed a broad cellular landscape 48 hours after challenge, with distinct inflammatory signatures that correlated with viral RNA burden in the lower respiratory tract. These inflammatory signatures included phagocyte-restricted expression of chemokines, such as CXCL10 and CCL3, and the broad expression of IFN-induced genes, such as MX1, ISG15, and IFIT1. Induction of these inflammatory profiles was suppressed by prior mRNA-1273 vaccination in a dose-dependent manner and negatively correlated with prechallenge serum and lung antibody titers against SARS-CoV-2 spike. These observations were replicated and validated in a second independent macaque challenge study using the B.1.351/Beta variant of SARS-CoV-2. These data support a model wherein vaccine-elicited antibody responses restrict viral replication following SARS-CoV-2 exposure, including limiting viral dissemination to the lower respiratory tract and infection-mediated inflammation and pathogenesis.

Authors

Adam T. Waickman, Kaitlin Victor, Krista Newell, Tao Li, Heather Friberg, Kathryn E. Foulds, Mario Roederer, Diane L. Bolton, Jeffrey R. Currier, Robert Seder

×

Usage data is cumulative from September 2022 through September 2023.

Usage JCI PMC
Text version 1,204 165
PDF 104 29
Figure 41 1
Supplemental data 51 5
Citation downloads 26 0
Totals 1,426 200
Total Views 1,626

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts