Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Cell-free DNA topology depends on its subcellular and cellular origins in cancer
Ethan Z. Malkin, Steven De Michino, Meghan Lambie, Rita Gill, Zhen Zhao, Ariana Rostami, Andrea Arruda, Mark D. Minden, Scott V. Bratman
Ethan Z. Malkin, Steven De Michino, Meghan Lambie, Rita Gill, Zhen Zhao, Ariana Rostami, Andrea Arruda, Mark D. Minden, Scott V. Bratman
View: Text | PDF
Resource and Technical Advance Cell biology Oncology

Cell-free DNA topology depends on its subcellular and cellular origins in cancer

  • Text
  • PDF
Abstract

Cancer cells release large quantities of cell-free DNA (cfDNA) into the surrounding tissue and circulation. As cfDNA is a common source of biomarkers for liquid biopsy and has been implicated as a functional mediator for intercellular communication, fundamental characterization of cfDNA topology has widespread biological and clinical ramifications. Whether the topology of cfDNA is such that it exists predominantly in membrane-bound extracellular vesicles (EVs) or in nonvesicular DNA-protein complexes remains poorly understood. Here, we employed a DNA-targeted approach to comprehensively assess total cfDNA topology in cancer. Using preclinical models and patient samples, we demonstrate that nuclear cfDNA is predominantly associated with nucleosomal particles and not EVs, while a substantial subset of mitochondrial cfDNA is membrane protected and disproportionately derived from nontumor cells. In addition, discrimination between membrane-protected and accessible mitochondrial cfDNA added diagnostic and prognostic value in a cohort of head and neck cancer patients. Our results support a revised model for cfDNA topology in cancer. Due to its abundance, nuclear cfDNA within nucleosomal particles is the most compelling liquid biopsy substrate, while EV-bound and accessible mitochondrial cfDNA represent distinct reservoirs of potential cancer biomarkers whose structural conformations may also influence their extracellular stability and propensity for uptake by recipient cells.

Authors

Ethan Z. Malkin, Steven De Michino, Meghan Lambie, Rita Gill, Zhen Zhao, Ariana Rostami, Andrea Arruda, Mark D. Minden, Scott V. Bratman

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 953 279
PDF 160 62
Figure 302 2
Supplemental data 55 17
Citation downloads 72 0
Totals 1,542 360
Total Views 1,902

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts