Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

VRK1 as a synthetic lethal target in VRK2 promoter–methylated cancers of the nervous system
Jonathan So, … , Mariella G. Filbin, William C. Hahn
Jonathan So, … , Mariella G. Filbin, William C. Hahn
Published August 30, 2022
Citation Information: JCI Insight. 2022;7(19):e158755. https://doi.org/10.1172/jci.insight.158755.
View: Text | PDF
Research Article Oncology

VRK1 as a synthetic lethal target in VRK2 promoter–methylated cancers of the nervous system

  • Text
  • PDF
Abstract

Collateral lethality occurs when loss of a gene/protein renders cancer cells dependent on its remaining paralog. Combining genome-scale CRISPR/Cas9 loss-of-function screens with RNA sequencing in over 900 cancer cell lines, we found that cancers of nervous system lineage, including adult and pediatric gliomas and neuroblastomas, required the nuclear kinase vaccinia-related kinase 1 (VRK1) for their survival in vivo. VRK1 dependency was inversely correlated with expression of its paralog VRK2. VRK2 knockout sensitized cells to VRK1 loss, and conversely, VRK2 overexpression increased cell fitness in the setting of VRK1 loss. DNA methylation of the VRK2 promoter was associated with low VRK2 expression in human neuroblastomas and adult and pediatric gliomas. Mechanistically, depletion of VRK1 reduced barrier-to-autointegration factor phosphorylation during mitosis, resulting in DNA damage and apoptosis. Together, these studies identify VRK1 as a synthetic lethal target in VRK2 promoter–methylated adult and pediatric gliomas and neuroblastomas.

Authors

Jonathan So, Nathaniel W. Mabe, Bernhard Englinger, Kin-Hoe Chow, Sydney M. Moyer, Smitha Yerrum, Maria C. Trissal, Joana G. Marques, Jason J. Kwon, Brian Shim, Sangita Pal, Eshini Panditharatna, Thomas Quinn, Daniel A. Schaefer, Daeun Jeong, David L. Mayhew, Justin Hwang, Rameen Beroukhim, Keith L. Ligon, Kimberly Stegmaier, Mariella G. Filbin, William C. Hahn

×

Usage data is cumulative from August 2022 through February 2023.

Usage JCI PMC
Text version 6,070 97
PDF 1,273 44
Figure 772 3
Supplemental data 254 14
Citation downloads 93 0
Totals 8,462 158
Total Views 8,620

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts