Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Cross-reactivity of SARS-CoV-2– and influenza A–specific T cells in individuals exposed to SARS-CoV-2
Worarat Chaisawangwong, … , Avi Z. Rosenberg, Jonathan P. Schneck
Worarat Chaisawangwong, … , Avi Z. Rosenberg, Jonathan P. Schneck
Published September 22, 2022
Citation Information: JCI Insight. 2022;7(18):e158308. https://doi.org/10.1172/jci.insight.158308.
View: Text | PDF
Research Article COVID-19 Immunology

Cross-reactivity of SARS-CoV-2– and influenza A–specific T cells in individuals exposed to SARS-CoV-2

  • Text
  • PDF
Abstract

Cross-reactive immunity between SARS-CoV-2 and other related coronaviruses has been well-documented, and it may play a role in preventing severe COVID-19. Epidemiological studies early in the pandemic showed a geographical association between high influenza vaccination rates and lower incidence of SARS-CoV-2 infection. We, therefore, analyzed whether exposure to influenza A virus (IAV) antigens could influence the T cell repertoire in response to SARS-CoV-2, indicating a heterologous immune response between these 2 unrelated viruses. Using artificial antigen-presenting cells (aAPCs) combined with real-time reverse-transcription PCR (RT-qPCR), we developed a sensitive assay to quickly screen for antigen-specific T cell responses and detected a significant correlation between responses to SARS-CoV-2 epitopes and IAV dominant epitope (M158–66). Further analysis showed that some COVID-19 convalescent donors exhibited both T cell receptor (TCR) specificity and functional cytokine responses to multiple SARS-CoV-2 epitopes and M158–66. Utilizing an aAPC-based stimulation/expansion assay, we detected cross-reactive T cells with specificity to SARS-CoV-2 and IAV. In addition, TCR sequencing of the cross-reactive and IAV-specific T cells revealed similarities between the TCR repertoires of the two populations. These results indicate that heterologous immunity shaped by our exposure to other unrelated endemic viruses may affect our immune response to novel viruses such as SARS-CoV-2.

Authors

Worarat Chaisawangwong, Hanzhi Wang, Theodore Kouo, Sebastian F. Salathe, Ariel Isser, Joan Glick Bieler, Maya L. Zhang, Natalie K. Livingston, Shuyi Li, Joseph J. Horowitz, Ron E. Samet, Israel Zyskind, Avi Z. Rosenberg, Jonathan P. Schneck

×

Usage data is cumulative from September 2022 through June 2023.

Usage JCI PMC
Text version 6,673 117
PDF 730 37
Figure 565 4
Table 96 0
Supplemental data 137 6
Citation downloads 118 0
Totals 8,319 164
Total Views 8,483

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts