Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

HIF1A-dependent induction of alveolar epithelial PFKFB3 dampens acute lung injury
Christine U. Vohwinkel, … , Rubin M. Tuder, Holger K. Eltzschig
Christine U. Vohwinkel, … , Rubin M. Tuder, Holger K. Eltzschig
Published November 3, 2022
Citation Information: JCI Insight. 2022;7(24):e157855. https://doi.org/10.1172/jci.insight.157855.
View: Text | PDF
Research Article Metabolism Pulmonology

HIF1A-dependent induction of alveolar epithelial PFKFB3 dampens acute lung injury

  • Text
  • PDF
Abstract

Acute lung injury (ALI) is a severe form of lung inflammation causing acute respiratory distress syndrome in patients. ALI pathogenesis is closely linked to uncontrolled alveolar inflammation. We hypothesize that specific enzymes of the glycolytic pathway could function as key regulators of alveolar inflammation. Therefore, we screened isolated alveolar epithelia from mice exposed to ALI induced by injurious ventilation to assess their metabolic responses. These studies pointed us toward a selective role for isoform 3 of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3). Pharmacologic inhibition or genetic deletion of Pfkfb3 in alveolar epithelia (Pfkfb3loxP/loxP SPC-ER-Cre+ mice) was associated with profound increases in ALI during injurious mechanical ventilation or acid instillation. Studies in genetic models linked Pfkfb3 expression and function to Hif1a. Not only did intratracheal pyruvate instillation reconstitute Pfkfb3loxP/loxP or Hif1aloxP/loxP SPC-ER-Cre+ mice, but pyruvate was also effective in ALI treatment of wild-type mice. Finally, proof-of-principle studies in human lung biopsies demonstrated increased PFKFB3 staining in injured lungs and colocalized PFKFB3 to alveolar epithelia. These studies reveal a specific role for PFKFB3 in counterbalancing alveolar inflammation and lay the groundwork for novel metabolic therapeutic approaches during ALI.

Authors

Christine U. Vohwinkel, Nana Burns, Ethan Coit, Xiaoyi Yuan, Eszter K. Vladar, Christina Sul, Eric P. Schmidt, Peter Carmeliet, Kurt Stenmark, Eva S. Nozik, Rubin M. Tuder, Holger K. Eltzschig

×

Usage data is cumulative from November 2022 through March 2023.

Usage JCI PMC
Text version 2,822 25
PDF 773 7
Figure 379 0
Supplemental data 75 1
Citation downloads 67 0
Totals 4,116 33
Total Views 4,149

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts