Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
HIF1A-dependent induction of alveolar epithelial PFKFB3 dampens acute lung injury
Christine U. Vohwinkel, … , Rubin M. Tuder, Holger K. Eltzschig
Christine U. Vohwinkel, … , Rubin M. Tuder, Holger K. Eltzschig
Published November 3, 2022
Citation Information: JCI Insight. 2022;7(24):e157855. https://doi.org/10.1172/jci.insight.157855.
View: Text | PDF
Research Article Metabolism Pulmonology

HIF1A-dependent induction of alveolar epithelial PFKFB3 dampens acute lung injury

  • Text
  • PDF
Abstract

Acute lung injury (ALI) is a severe form of lung inflammation causing acute respiratory distress syndrome in patients. ALI pathogenesis is closely linked to uncontrolled alveolar inflammation. We hypothesize that specific enzymes of the glycolytic pathway could function as key regulators of alveolar inflammation. Therefore, we screened isolated alveolar epithelia from mice exposed to ALI induced by injurious ventilation to assess their metabolic responses. These studies pointed us toward a selective role for isoform 3 of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3). Pharmacologic inhibition or genetic deletion of Pfkfb3 in alveolar epithelia (Pfkfb3loxP/loxP SPC-ER-Cre+ mice) was associated with profound increases in ALI during injurious mechanical ventilation or acid instillation. Studies in genetic models linked Pfkfb3 expression and function to Hif1a. Not only did intratracheal pyruvate instillation reconstitute Pfkfb3loxP/loxP or Hif1aloxP/loxP SPC-ER-Cre+ mice, but pyruvate was also effective in ALI treatment of wild-type mice. Finally, proof-of-principle studies in human lung biopsies demonstrated increased PFKFB3 staining in injured lungs and colocalized PFKFB3 to alveolar epithelia. These studies reveal a specific role for PFKFB3 in counterbalancing alveolar inflammation and lay the groundwork for novel metabolic therapeutic approaches during ALI.

Authors

Christine U. Vohwinkel, Nana Burns, Ethan Coit, Xiaoyi Yuan, Eszter K. Vladar, Christina Sul, Eric P. Schmidt, Peter Carmeliet, Kurt Stenmark, Eva S. Nozik, Rubin M. Tuder, Holger K. Eltzschig

×

Figure 8

PFKFB3 is apparent in patients with diffuse alveolar damage.

Options: View larger image (or click on image) Download as PowerPoint
PFKFB3 is apparent in patients with diffuse alveolar damage.
(A) Represe...
(A) Representative immunohistochemical staining of lung biopsy tissue specimen from a patient with diffuse alveolar damage (the histologic manifestation of ARDS) and control specimen. (B) Quantification of PFKFB3 expression in lung tissue of patients with diffuse alveolar damage (n = 9) compared with control patients (n = 6). Control specimens were lung biopsies from lungs rejected for transplants. Box-and-whisker plots illustrating the significant difference in mean PFKFB3 expression observed between control and patients with diffuse alveolar damage. For each plot, box bounds represent the first quartile (lower bound) and third quartile (upper bound). Lines within the box represent the median. Whiskers represent the difference from the minimum value observed in the data set to the first quartile (lower whisker) and the difference from the third quartile to the maximum value observed (upper whisker). *P < 0.05. Data were analyzed with 2-tailed, unpaired Student’s t test. (C) Representative images of lungs from control lungs and patients with diffuse alveolar damage, which were stained with ATII cell marker anti–HT2-280 and anti-Pfkfb3 antibody. The anti–HT2-280 antibody colocalizes with Pfkfb3 within many alveolar epithelial cells (white arrowheads). Images were obtained with 20× objective. All scale bars represent 20 μm. BF, bright-field.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts