BACKGROUND Immune cell profiling of primary and metastatic CNS tumors has been focused on the tumor, not the tumor microenvironment (TME), or has been analyzed via biopsies.METHODS En bloc resections of gliomas (n = 10) and lung metastases (n = 10) were analyzed via tissue segmentation and high-dimension Opal 7-color multiplex imaging. Single-cell RNA analyses were used to infer immune cell functionality.RESULTS Within gliomas, T cells were localized in the infiltrating edge and perivascular space of tumors, while residing mostly in the stroma of metastatic tumors. CD163+ macrophages were evident throughout the TME of metastatic tumors, whereas in gliomas, CD68+, CD11c+CD68+, and CD11c+CD68+CD163+ cell subtypes were commonly observed. In lung metastases, T cells interacted with CD163+ macrophages as dyads and clusters at the brain-tumor interface and within the tumor itself and as clusters within the necrotic core. In contrast, gliomas typically lacked dyad and cluster interactions, except for T cell CD68+ cell dyads within the tumor. Analysis of transcriptomic data in glioblastomas revealed that innate immune cells expressed both proinflammatory and immunosuppressive gene signatures.CONCLUSION Our results show that immunosuppressive macrophages are abundant within the TME and that the immune cell interactome between cancer lineages is distinct. Further, these data provide information for evaluating the role of different immune cell populations in brain tumor growth and therapeutic responses.FUNDING This study was supported by the NIH (NS120547), a Developmental research project award (P50CA221747), ReMission Alliance, institutional funding from Northwestern University and the Lurie Comprehensive Cancer Center, and gifts from the Mosky family and Perry McKay. Performed in the Flow Cytometry & Cellular Imaging Core Facility at MD Anderson Cancer Center, this study received support in part from the NIH (CA016672) and the National Cancer Institute (NCI) Research Specialist award 1 (R50 CA243707). Additional support was provided by CCSG Bioinformatics Shared Resource 5 (P30 CA046592), a gift from Agilent Technologies, a Research Scholar Grant from the American Cancer Society (RSG-16-005-01), a Precision Health Investigator Award from University of Michigan (U-M) Precision Health, the NCI (R37-CA214955), startup institutional research funds from U-M, and a Biomedical Informatics & Data Science Training Grant (T32GM141746).
Hinda Najem, Martina Ott, Cynthia Kassab, Arvind Rao, Ganesh Rao, Anantha Marisetty, Adam M. Sonabend, Craig Horbinski, Roel Verhaak, Anand Shankar, Santhoshi N. Krishnan, Frederick S. Varn, Víctor A. Arrieta, Pravesh Gupta, Sherise D. Ferguson, Jason T. Huse, Gregory N. Fuller, James P. Long, Daniel E. Winkowski, Ben A. Freiberg, Charles David James, Leonidas C. Platanias, Maciej S. Lesniak, Jared K. Burks, Amy B. Heimberger
This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.
PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.
Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.