Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Immune and epithelial determinants of age-related risk and alveolar injury in fatal COVID-19
Michael Chait, Mine M. Yilmaz, Shanila Shakil, Amy W. Ku, Pranay Dogra, Thomas J. Connors, Peter A. Szabo, Joshua I. Gray, Steven B. Wells, Masaru Kubota, Rei Matsumoto, Maya M.L. Poon, Mark E. Snyder, Matthew R. Baldwin, Peter A. Sims, Anjali Saqi, Donna L. Farber, Stuart P. Weisberg
Michael Chait, Mine M. Yilmaz, Shanila Shakil, Amy W. Ku, Pranay Dogra, Thomas J. Connors, Peter A. Szabo, Joshua I. Gray, Steven B. Wells, Masaru Kubota, Rei Matsumoto, Maya M.L. Poon, Mark E. Snyder, Matthew R. Baldwin, Peter A. Sims, Anjali Saqi, Donna L. Farber, Stuart P. Weisberg
View: Text | PDF
Research Article Aging COVID-19

Immune and epithelial determinants of age-related risk and alveolar injury in fatal COVID-19

  • Text
  • PDF
Abstract

Respiratory failure in COVID-19 is characterized by widespread disruption of the lung’s alveolar gas exchange interface. To elucidate determinants of alveolar lung damage, we performed epithelial and immune cell profiling in lungs from 24 COVID-19 autopsies and 43 uninfected organ donors ages 18–92 years. We found marked loss of type 2 alveolar epithelial (T2AE) cells and increased perialveolar lymphocyte cytotoxicity in all fatal COVID-19 cases, even at early stages before typical patterns of acute lung injury are histologically apparent. In lungs from uninfected organ donors, there was also progressive loss of T2AE cells with increasing age, which may increase susceptibility to COVID-19–mediated lung damage in older individuals. In the fatal COVID-19 cases, macrophage infiltration differed according to the histopathological pattern of lung injury. In cases with acute lung injury, we found accumulation of CD4+ macrophages that expressed distinctly high levels of T cell activation and costimulation genes and strongly correlated with increased extent of alveolar epithelial cell depletion and CD8+ T cell cytotoxicity. Together, our results show that T2AE cell deficiency may underlie age-related COVID-19 risk and initiate alveolar dysfunction shortly after infection, and we define immune cell mediators that may contribute to alveolar injury in distinct pathological stages of fatal COVID-19.

Authors

Michael Chait, Mine M. Yilmaz, Shanila Shakil, Amy W. Ku, Pranay Dogra, Thomas J. Connors, Peter A. Szabo, Joshua I. Gray, Steven B. Wells, Masaru Kubota, Rei Matsumoto, Maya M.L. Poon, Mark E. Snyder, Matthew R. Baldwin, Peter A. Sims, Anjali Saqi, Donna L. Farber, Stuart P. Weisberg

×

Figure 6

Correlation of lung T cell cytotoxicity with alveolar epithelial cell loss in fatal COVID-19.

Options: View larger image (or click on image) Download as PowerPoint
Correlation of lung T cell cytotoxicity with alveolar epithelial cell lo...
(A) Uniform manifold approximation and projection (UMAP) embeddings of total T/NK cells obtained from airways of 3 patients with COVID-19 (top left) with a feature plot showing normalized expression of GZMB (bottom left). Representative marker genes for each cluster are shown in the normalized and scaled heatmap to the right, with color bars corresponding to position on the UMAP. (B) The percentage GZMB+ cells within the CD8+ T cell subset in lungs and (C) the overall density of all CD8+ T cells is plotted against the density of lung T2AE cells (left) and T1AE cells (right) from all COVID-19 cases (n = 24) and controls (n = 12). The best-fit line with 95% confidence bands and R2 and P values were calculated using simple linear regression analysis.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts