Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
IL-4 prevents adenosine-mediated immunoregulation by inhibiting CD39 expression
Fengqin Fang, … , Cornelia M. Weyand, Jörg J. Goronzy
Fengqin Fang, … , Cornelia M. Weyand, Jörg J. Goronzy
Published June 22, 2022
Citation Information: JCI Insight. 2022;7(12):e157509. https://doi.org/10.1172/jci.insight.157509.
View: Text | PDF
Research Article Aging

IL-4 prevents adenosine-mediated immunoregulation by inhibiting CD39 expression

  • Text
  • PDF
Abstract

The ectonucleotidase CD39 functions as a checkpoint in purinergic signaling on effector T cells. By depleting eATP and initiating the generation of adenosine, it impairs memory cell development and contributes to T cell exhaustion, thereby causing defective tumor immunity and deficient T cell responses in older adults who have increased CD39 expression. Tuning enzymatic activity of CD39 and targeting the transcriptional regulation of ENTPD1 can be used to modulate purinergic signaling. Here, we describe that STAT6 phosphorylation downstream of IL-4 signaling represses CD39 expression on activated T cells by inducing a transcription factor network including GATA3, GFI1, and YY1. GATA3 suppresses ENTPD1 transcription through prevention of RUNX3 recruitment to the ENTPD1 promoter. Conversely, pharmacological STAT6 inhibition decreases T cell effector functions via increased CD39 expression, resulting in the defective signaling of P2X receptors by ATP and stimulation of A2A receptors by adenosine. Our studies suggest that inhibiting the STAT6 pathway to increase CD39 expression has the potential to treat autoimmune disease while stimulation of the pathway could improve T cell immunity.

Authors

Fengqin Fang, Wenqiang Cao, Yunmei Mu, Hirohisa Okuyama, Lingjie Li, Jingtao Qiu, Cornelia M. Weyand, Jörg J. Goronzy

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts