Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

PRC2 loss drives MPNST metastasis and matrix remodeling
Qierra R. Brockman, Amanda Scherer, Gavin R. McGivney, Wade R. Gutierrez, Andrew P. Voigt, Alexandra L. Isaacson, Emily A. Laverty, Grace Roughton, Vickie Knepper-Adrian, Benjamin Darbro, Munir R. Tanas, Christopher S. Stipp, Rebecca D. Dodd
Qierra R. Brockman, Amanda Scherer, Gavin R. McGivney, Wade R. Gutierrez, Andrew P. Voigt, Alexandra L. Isaacson, Emily A. Laverty, Grace Roughton, Vickie Knepper-Adrian, Benjamin Darbro, Munir R. Tanas, Christopher S. Stipp, Rebecca D. Dodd
View: Text | PDF
Research Article Oncology

PRC2 loss drives MPNST metastasis and matrix remodeling

  • Text
  • PDF
Abstract

The histone methyltransferase PRC2 plays a complex role in cancer. Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas with frequent loss-of-function mutations in PRC2 that are associated with poor outcome. Here, we identify a critical role for PRC2 loss in driving MPNST metastasis. PRC2-dependent metastatic phenotypes included increased collagen-dependent invasion, upregulation of matrix-remodeling enzymes, and elevated lung metastasis in orthotopic mouse models. Furthermore, clinical sample analysis determined that PRC2 loss correlated with metastatic disease, increased fibrosis, and decreased survival in patients with MPNSTs. These results may have broad implications for PRC2 function across multiple cancers and provide a strong rationale for investigating potential therapies targeting ECM-remodeling enzymes and tumor fibrosis to improve outcomes in patients with MPNSTs.

Authors

Qierra R. Brockman, Amanda Scherer, Gavin R. McGivney, Wade R. Gutierrez, Andrew P. Voigt, Alexandra L. Isaacson, Emily A. Laverty, Grace Roughton, Vickie Knepper-Adrian, Benjamin Darbro, Munir R. Tanas, Christopher S. Stipp, Rebecca D. Dodd

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 782 269
PDF 125 58
Figure 348 0
Supplemental data 109 12
Citation downloads 75 0
Totals 1,439 339
Total Views 1,778

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts