Studying temporal gene expression shifts during disease progression provides important insights into the biological mechanisms that distinguish adaptive and maladaptive responses. Existing tools for the analysis of time course transcriptomic data are not designed to optimally identify distinct temporal patterns when analyzing dynamic differentially expressed genes (DDEGs). Moreover, there are not enough methods to assess and visualize the temporal progression of biological pathways mapped from time course transcriptomic data sets. In this study, we developed an open-source R package TrendCatcher (https://github.com/jaleesr/TrendCatcher), which applies the smoothing spline ANOVA model and break point searching strategy, to identify and visualize distinct dynamic transcriptional gene signatures and biological processes from longitudinal data sets. We used TrendCatcher to perform a systematic temporal analysis of COVID-19 peripheral blood transcriptomes, including bulk and single-cell RNA-Seq time course data. TrendCatcher uncovered the early and persistent activation of neutrophils and coagulation pathways, as well as impaired type I IFN (IFN-I) signaling in circulating cells as a hallmark of patients who progressed to severe COVID-19, whereas no such patterns were identified in individuals receiving SARS-CoV-2 vaccinations or patients with mild COVID-19. These results underscore the importance of systematic temporal analysis to identify early biomarkers and possible pathogenic therapeutic targets.
Xinge Wang, Mark A. Sanborn, Yang Dai, Jalees Rehman
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 621 | 397 |
92 | 73 | |
Figure | 259 | 10 |
Table | 19 | 0 |
Supplemental data | 36 | 12 |
Citation downloads | 56 | 0 |
Totals | 1,083 | 492 |
Total Views | 1,575 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.