Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Response to supraphysiological testosterone is predicted by a distinct androgen receptor cistrome
Xintao Qiu, Lisha G. Brown, Jennifer L. Conner, Holly M. Nguyen, Nadia Boufaied, Sarah Abou Alaiwi, Ji-Heui Seo, Talal El Zarif, Connor Bell, Edward O’Connor, Brian Hanratty, Mark Pomerantz, Matthew L. Freedman, Myles Brown, Michael C. Haffner, Peter S. Nelson, Felix Y. Feng, David P. Labbé, Henry W. Long, Eva Corey
Xintao Qiu, Lisha G. Brown, Jennifer L. Conner, Holly M. Nguyen, Nadia Boufaied, Sarah Abou Alaiwi, Ji-Heui Seo, Talal El Zarif, Connor Bell, Edward O’Connor, Brian Hanratty, Mark Pomerantz, Matthew L. Freedman, Myles Brown, Michael C. Haffner, Peter S. Nelson, Felix Y. Feng, David P. Labbé, Henry W. Long, Eva Corey
View: Text | PDF
Resource and Technical Advance Endocrinology Oncology

Response to supraphysiological testosterone is predicted by a distinct androgen receptor cistrome

  • Text
  • PDF
Abstract

The androgen receptor (AR) is a master transcription factor that regulates prostate cancer (PC) development and progression. Inhibition of AR signaling by androgen deprivation is the first-line therapy with initial efficacy for advanced and recurrent PC. Paradoxically, supraphysiological levels of testosterone (SPT) also inhibit PC progression. However, as with any therapy, not all patients show a therapeutic benefit, and responses differ widely in magnitude and duration. In this study, we evaluated whether differences in the AR cistrome before treatment can distinguish between SPT-responding (R) and -nonresponding (NR) tumors. We provide the first preclinical evidence to our knowledge that SPT-R tumors exhibit a distinct AR cistrome when compared with SPT-NR tumors, indicating a differential biological role of the AR. We applied an integrated analysis of ChIP-Seq and RNA-Seq to the pretreatment tumors and identified an SPT-R signature that distinguishes R and NR tumors. Because transcriptomes of SPT-treated clinical specimens are not available, we interrogated available castration-resistant PC (CRPC) transcriptomes and showed that the SPT-R signature is associated with improved survival and has the potential to identify patients who would respond to SPT. These findings provide an opportunity to identify the subset of patients with CRPC who would benefit from SPT therapy.

Authors

Xintao Qiu, Lisha G. Brown, Jennifer L. Conner, Holly M. Nguyen, Nadia Boufaied, Sarah Abou Alaiwi, Ji-Heui Seo, Talal El Zarif, Connor Bell, Edward O’Connor, Brian Hanratty, Mark Pomerantz, Matthew L. Freedman, Myles Brown, Michael C. Haffner, Peter S. Nelson, Felix Y. Feng, David P. Labbé, Henry W. Long, Eva Corey

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,023 153
PDF 145 20
Figure 373 4
Table 125 0
Supplemental data 95 11
Citation downloads 95 0
Totals 1,856 188
Total Views 2,044

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts