Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Marked elevations in lung and plasma ceramide in COVID-19 linked to microvascular injury
Irina Petrache, Elisabet Pujadas, Aditya Ganju, Karina A. Serban, Alexander Borowiec, Beatrice Babbs, Irina A. Bronova, Nicholas Egersdorf, Patrick S. Hume, Khushboo Goel, William J. Janssen, Evgeny V. Berdyshev, Carlos Cordon-Cardo, Richard Kolesnick
Irina Petrache, Elisabet Pujadas, Aditya Ganju, Karina A. Serban, Alexander Borowiec, Beatrice Babbs, Irina A. Bronova, Nicholas Egersdorf, Patrick S. Hume, Khushboo Goel, William J. Janssen, Evgeny V. Berdyshev, Carlos Cordon-Cardo, Richard Kolesnick
View: Text | PDF
Research Article COVID-19

Marked elevations in lung and plasma ceramide in COVID-19 linked to microvascular injury

  • Text
  • PDF
Abstract

The pathogenesis of the marked pulmonary microvasculature injury, a distinguishing feature of COVID-19 acute respiratory distress syndrome (COVID-ARDS), remains unclear. Implicated in the pathophysiology of diverse diseases characterized by endothelial damage, including ARDS and ischemic cardiovascular disease, ceramide and in particular palmitoyl ceramide (C16:0-ceramide) may be involved in the microvascular injury in COVID-19. Using deidentified plasma and lung samples from COVID-19 patients, ceramide profiling by mass spectrometry was performed. Compared with healthy individuals, a specific 3-fold C16:0-ceramide elevation in COVID-19 patient plasma was identified. Compared with age-matched controls, autopsied lungs of individuals succumbing to COVID-ARDS displayed a massive 9-fold C16:0-ceramide elevation and exhibited a previously unrecognized microvascular ceramide-staining pattern and markedly enhanced apoptosis. In COVID-19 plasma and lungs, the C16-ceramide/C24-ceramide ratios were increased and reversed, respectively, consistent with increased risk of vascular injury. Indeed, exposure of primary human lung microvascular endothelial cell monolayers to C16:0-ceramide–rich plasma lipid extracts from COVID-19, but not healthy, individuals led to a significant decrease in endothelial barrier function. This effect was phenocopied by spiking healthy plasma lipid extracts with synthetic C16:0-ceramide and was inhibited by treatment with ceramide-neutralizing monoclonal antibody or single-chain variable fragment. These results indicate that C16:0-ceramide may be implicated in the vascular injury associated with COVID-19.

Authors

Irina Petrache, Elisabet Pujadas, Aditya Ganju, Karina A. Serban, Alexander Borowiec, Beatrice Babbs, Irina A. Bronova, Nicholas Egersdorf, Patrick S. Hume, Khushboo Goel, William J. Janssen, Evgeny V. Berdyshev, Carlos Cordon-Cardo, Richard Kolesnick

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (580.51 KB)

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts