Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
ARID1A-deficient bladder cancer is dependent on PI3K signaling and sensitive to EZH2 and PI3K inhibitors
Hasibur Rehman, … , Sooryanarayana Varambally, James E. Ferguson III
Hasibur Rehman, … , Sooryanarayana Varambally, James E. Ferguson III
Published July 19, 2022
Citation Information: JCI Insight. 2022;7(16):e155899. https://doi.org/10.1172/jci.insight.155899.
View: Text | PDF
Research Article Oncology

ARID1A-deficient bladder cancer is dependent on PI3K signaling and sensitive to EZH2 and PI3K inhibitors

  • Text
  • PDF
Abstract

Metastatic urothelial carcinoma is generally incurable with current systemic therapies. Chromatin modifiers are frequently mutated in bladder cancer, with ARID1A-inactivating mutations present in about 20% of tumors. EZH2, a histone methyltransferase, acts as an oncogene that functionally opposes ARID1A. In addition, PI3K signaling is activated in more than 20% of bladder cancers. Using a combination of in vitro and in vivo data, including patient-derived xenografts, we show that ARID1A-mutant tumors were more sensitive to EZH2 inhibition than ARID1A WT tumors. Mechanistic studies revealed that (a) ARID1A deficiency results in a dependency on PI3K/AKT/mTOR signaling via upregulation of a noncanonical PI3K regulatory subunit, PIK3R3, and downregulation of MAPK signaling and (b) EZH2 inhibitor sensitivity is due to upregulation of PIK3IP1, a protein inhibitor of PI3K signaling. We show that PIK3IP1 inhibited PI3K signaling by inducing proteasomal degradation of PIK3R3. Furthermore, ARID1A-deficient bladder cancer was sensitive to combination therapies with EZH2 and PI3K inhibitors in a synergistic manner. Thus, our studies suggest that bladder cancers with ARID1A mutations can be treated with inhibitors of EZH2 and/or PI3K and revealed mechanistic insights into the role of noncanonical PI3K constituents in bladder cancer biology.

Authors

Hasibur Rehman, Darshan S. Chandrashekar, Chakravarthi Balabhadrapatruni, Saroj Nepal, Sai Akshaya Hodigere Balasubramanya, Abigail K. Shelton, Kasey R. Skinner, Ai-Hong Ma, Ting Rao, Sumit Agarwal, Marie-Lisa Eich, Alyncia D. Robinson, Gurudatta Naik, Upender Manne, George J. Netto, C. Ryan Miller, Chong-xian Pan, Guru Sonpavde, Sooryanarayana Varambally, James E. Ferguson III

×

Figure 1

Bladder cancer cells and xenografts with inactivating ARID1A mutations are sensitive to EZH2 inhibition.

Options: View larger image (or click on image) Download as PowerPoint
Bladder cancer cells and xenografts with inactivating ARID1A mutations a...
(A) Immunoblots showing lower protein levels of ARID1A in bladder cancer cell lines harboring heterozygous ARID1A-truncating mutations (HT1376 and VMCUB-1), compared with ARID1Awt alleles (T24, 5637, and RT112). (B) Cell viability dose-response assay showing that ARID1Amut bladder cancer cells are more sensitive to the EZH2 inhibitor, GSK-126 than ARID1Awt cells (treated for 6 days). Two-way ANOVA using IC50 values was performed. (C) Cell viability time course with increasing concentrations of GSK-126, indicating that ARID1Amut cell lines are more sensitive than ARID1Awt cell lines. (D) Xenografts from ARID1Amut cells are sensitive to GSK-126, whereas ARID1Awt xenografts are resistant. (E) Xenografts (PDX) derived from bladder cancers with ARID1A mutations are more sensitive to GSK-126 than ARID1Awt xenografts. Unless otherwise specified, t tests were performed. N.S. denotes “nonspecific.”

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts