Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

EBAG9 controls CD8+ T cell memory formation responding to tumor challenge in mice
Armin Rehm, … , Gerald Willimsky, Uta E. Höpken
Armin Rehm, … , Gerald Willimsky, Uta E. Höpken
Published April 28, 2022
Citation Information: JCI Insight. 2022;7(11):e155534. https://doi.org/10.1172/jci.insight.155534.
View: Text | PDF
Research Article Immunology Oncology

EBAG9 controls CD8+ T cell memory formation responding to tumor challenge in mice

  • Text
  • PDF
Abstract

Insight into processes that determine CD8+ T cell memory formation has been obtained from infection models. These models are biased toward an inflammatory milieu and often use high-avidity CD8+ T cells in adoptive-transfer procedures. It is unclear whether these conditions mimic the differentiation processes of an endogenous repertoire that proceed upon noninflammatory conditions prevailing in premalignant tumor lesions. We examined the role of cytolytic capacity on CD8+ T cell fate decisions when primed by tumor cells or by minor histocompatibility antigen–mismatched leukocytes. CD8+ memory commitment was analyzed in Ebag9-deficient mice that exhibited enhanced tumor cell lysis. This property endowed Ebag9–/– mice with extended control of Tcl-1 oncogene–induced chronic lymphocytic leukemia progression. In Ebag9–/– mice, an expanded memory population was obtained for anti-HY and anti–SV-40 T antigen–specific T cells, despite unchanged effector frequencies in the primary response. By comparing the single-cell transcriptomes of CD8+ T cells responding to tumor cell vaccination, we found differential distribution of subpopulations between Ebag9+/+ and Ebag9–/– T cells. In Ebag9–/– cells, these larger clusters contained genes encoding transcription factors regulating memory cell differentiation and anti-apoptotic gene functions. Our findings link EBAG9-controlled cytolytic activity and the commitment to the CD8+ memory lineage.

Authors

Armin Rehm, Anthea Wirges, Dana Hoser, Cornelius Fischer, Stefanie Herda, Kerstin Gerlach, Sascha Sauer, Gerald Willimsky, Uta E. Höpken

×

Usage data is cumulative from June 2022 through June 2023.

Usage JCI PMC
Text version 3,387 70
PDF 629 22
Figure 351 3
Supplemental data 82 1
Citation downloads 77 0
Totals 4,526 96
Total Views 4,622

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts