Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Clinico-histopathologic and single-nuclei RNA-sequencing insights into cardiac injury and microthrombi in critical COVID-19
Michael I. Brener, Michelle L. Hulke, Nobuaki Fukuma, Stephanie Golob, Robert S. Zilinyi, Zhipeng Zhou, Christos Tzimas, Ilaria Russo, Claire McGroder, Ryan D. Pfeiffer, Alexander Chong, Geping Zhang, Daniel Burkhoff, Martin B. Leon, Mathew S. Maurer, Jeffrey W. Moses, Anne-Catrin Uhlemann, Hanina Hibshoosh, Nir Uriel, Matthias J. Szabolcs, Björn Redfors, Charles C. Marboe, Matthew R. Baldwin, Nathan R. Tucker, Emily J. Tsai
Michael I. Brener, Michelle L. Hulke, Nobuaki Fukuma, Stephanie Golob, Robert S. Zilinyi, Zhipeng Zhou, Christos Tzimas, Ilaria Russo, Claire McGroder, Ryan D. Pfeiffer, Alexander Chong, Geping Zhang, Daniel Burkhoff, Martin B. Leon, Mathew S. Maurer, Jeffrey W. Moses, Anne-Catrin Uhlemann, Hanina Hibshoosh, Nir Uriel, Matthias J. Szabolcs, Björn Redfors, Charles C. Marboe, Matthew R. Baldwin, Nathan R. Tucker, Emily J. Tsai
View: Text | PDF
Research Article COVID-19 Cardiology

Clinico-histopathologic and single-nuclei RNA-sequencing insights into cardiac injury and microthrombi in critical COVID-19

  • Text
  • PDF
Abstract

Acute cardiac injury is prevalent in critical COVID-19 and associated with increased mortality. Its etiology remains debated, as initially presumed causes — myocarditis and cardiac necrosis — have proved uncommon. To elucidate the pathophysiology of COVID-19–associated cardiac injury, we conducted a prospective study of the first 69 consecutive COVID-19 decedents at CUIMC in New York City. Of 6 acute cardiac histopathologic features, presence of microthrombi was the most commonly detected among our cohort. We tested associations of cardiac microthrombi with biomarkers of inflammation, cardiac injury, and fibrinolysis and with in-hospital antiplatelet therapy, therapeutic anticoagulation, and corticosteroid treatment, while adjusting for multiple clinical factors, including COVID-19 therapies. Higher peak erythrocyte sedimentation rate and C-reactive protein were independently associated with increased odds of microthrombi, supporting an immunothrombotic etiology. Using single-nuclei RNA-sequencing analysis on 3 patients with and 4 patients without cardiac microthrombi, we discovered an enrichment of prothrombotic/antifibrinolytic, extracellular matrix remodeling, and immune-potentiating signaling among cardiac fibroblasts in microthrombi-positive, relative to microthrombi-negative, COVID-19 hearts. Non–COVID-19, nonfailing hearts were used as reference controls. Our study identifies a specific transcriptomic signature in cardiac fibroblasts as a salient feature of microthrombi-positive COVID-19 hearts. Our findings warrant further mechanistic study as cardiac fibroblasts may represent a potential therapeutic target for COVID-19–associated cardiac microthrombi.

Authors

Michael I. Brener, Michelle L. Hulke, Nobuaki Fukuma, Stephanie Golob, Robert S. Zilinyi, Zhipeng Zhou, Christos Tzimas, Ilaria Russo, Claire McGroder, Ryan D. Pfeiffer, Alexander Chong, Geping Zhang, Daniel Burkhoff, Martin B. Leon, Mathew S. Maurer, Jeffrey W. Moses, Anne-Catrin Uhlemann, Hanina Hibshoosh, Nir Uriel, Matthias J. Szabolcs, Björn Redfors, Charles C. Marboe, Matthew R. Baldwin, Nathan R. Tucker, Emily J. Tsai

×

Figure 2

Adjusted GAMs of the association between serum biomarker peak values and cardiac microthrombi.

Options: View larger image (or click on image) Download as PowerPoint
Adjusted GAMs of the association between serum biomarker peak values and...
We calculated a covariate balancing propensity score (CBPS) for each independent variable by regressing it on possible confounders; the resulting propensity score was used in the GAM as a single covariable. The covariates used to calculate CBPS were age, sex, race and ethnicity, BMI, duration of COVID-19 illness, outpatient ACE inhibitor/angiotensin receptor blocker (ARB) use, outpatient antiplatelet therapy, and inpatient administration of corticosteroids, remdesivir, interleukin-6 (IL-6) receptor antagonists, and therapeutic anticoagulation.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts