Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

SETD2 regulates chromatin accessibility and transcription to suppress lung tumorigenesis
Yuchen Xie, Merve Sahin, Toru Wakamatsu, Akane Inoue-Yamauchi, Wanming Zhao, Song Han, Amrita M. Nargund, Shaoyuan Yang, Yang Lyu, James J. Hsieh, Christina S. Leslie, Emily H. Cheng
Yuchen Xie, Merve Sahin, Toru Wakamatsu, Akane Inoue-Yamauchi, Wanming Zhao, Song Han, Amrita M. Nargund, Shaoyuan Yang, Yang Lyu, James J. Hsieh, Christina S. Leslie, Emily H. Cheng
View: Text | PDF
Research Article Oncology

SETD2 regulates chromatin accessibility and transcription to suppress lung tumorigenesis

  • Text
  • PDF
Abstract

SETD2, a H3K36 trimethyltransferase, is the most frequently mutated epigenetic modifier in lung adenocarcinoma, with a mutation frequency of approximately 9%. However, how SETD2 loss of function promotes tumorigenesis remains unclear. Using conditional Setd2-KO mice, we demonstrated that Setd2 deficiency accelerated the initiation of KrasG12D-driven lung tumorigenesis, increased tumor burden, and significantly reduced mouse survival. An integrated chromatin accessibility and transcriptome analysis revealed a potentially novel tumor suppressor model of SETD2 in which SETD2 loss activates intronic enhancers to drive oncogenic transcriptional output, including the KRAS transcriptional signature and PRC2-repressed targets, through regulation of chromatin accessibility and histone chaperone recruitment. Importantly, SETD2 loss sensitized KRAS-mutant lung cancer to inhibition of histone chaperones, the FACT complex, or transcriptional elongation both in vitro and in vivo. Overall, our studies not only provide insight into how SETD2 loss shapes the epigenetic and transcriptional landscape to promote tumorigenesis, but they also identify potential therapeutic strategies for SETD2 mutant cancers.

Authors

Yuchen Xie, Merve Sahin, Toru Wakamatsu, Akane Inoue-Yamauchi, Wanming Zhao, Song Han, Amrita M. Nargund, Shaoyuan Yang, Yang Lyu, James J. Hsieh, Christina S. Leslie, Emily H. Cheng

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 952 524
PDF 163 67
Figure 414 5
Supplemental data 112 24
Citation downloads 84 0
Totals 1,725 620
Total Views 2,345

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts