Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
HGFAC is a ChREBP-regulated hepatokine that enhances glucose and lipid homeostasis
Ashot Sargsyan, … , Linus T. Tsai, Mark A. Herman
Ashot Sargsyan, … , Linus T. Tsai, Mark A. Herman
Published November 22, 2022
Citation Information: JCI Insight. 2023;8(1):e153740. https://doi.org/10.1172/jci.insight.153740.
View: Text | PDF
Research Article Metabolism

HGFAC is a ChREBP-regulated hepatokine that enhances glucose and lipid homeostasis

  • Text
  • PDF
Abstract

Carbohydrate response element–binding protein (ChREBP) is a carbohydrate-sensing transcription factor that regulates both adaptive and maladaptive genomic responses in coordination of systemic fuel homeostasis. Genetic variants in the ChREBP locus associate with diverse metabolic traits in humans, including circulating lipids. To identify novel ChREBP-regulated hepatokines that contribute to its systemic metabolic effects, we integrated ChREBP ChIP-Seq analysis in mouse liver with human genetic and genomic data for lipid traits and identified hepatocyte growth factor activator (HGFAC) as a promising ChREBP-regulated candidate in mice and humans. HGFAC is a protease that activates the pleiotropic hormone hepatocyte growth factor. We demonstrate that HGFAC-KO mice had phenotypes concordant with putative loss-of-function variants in human HGFAC. Moreover, in gain- and loss-of-function genetic mouse models, we demonstrate that HGFAC enhanced lipid and glucose homeostasis, which may be mediated in part through actions to activate hepatic PPARγ activity. Together, our studies show that ChREBP mediated an adaptive response to overnutrition via activation of HGFAC in the liver to preserve glucose and lipid homeostasis.

Authors

Ashot Sargsyan, Ludivine Doridot, Sarah A. Hannou, Wenxin Tong, Harini Srinivasan, Rachael Ivison, Ruby Monn, Henry H. Kou, Jonathan M. Haldeman, Michelle Arlotto, Phillip J. White, Paul A. Grimsrud, Inna Astapova, Linus T. Tsai, Mark A. Herman

×

Graphical abstract

Options: View larger image (or click on image)

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts