Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Gq signaling in α cells is critical for maintaining euglycemia
Liu Liu, Diptadip Dattaroy, Katherine F. Simpson, Luiz F. Barella, Yinghong Cui, Yan Xiong, Jian Jin, Gabriele M. König, Evi Kostenis, Jefferey C. Roman, Klaus H. Kaestner, Nicolai M. Doliba, Jürgen Wess
Liu Liu, Diptadip Dattaroy, Katherine F. Simpson, Luiz F. Barella, Yinghong Cui, Yan Xiong, Jian Jin, Gabriele M. König, Evi Kostenis, Jefferey C. Roman, Klaus H. Kaestner, Nicolai M. Doliba, Jürgen Wess
View: Text | PDF
Research Article Metabolism

Gq signaling in α cells is critical for maintaining euglycemia

  • Text
  • PDF
Abstract

Glucagon, a hormone released from pancreatic α cells, plays a key role in maintaining euglycemia. New insights into the signaling pathways that control glucagon secretion may stimulate the development of novel therapeutic agents. In this study, we investigated the potential regulation of α cell function by G proteins of the Gq family. The use of a chemogenetic strategy allowed us to selectively activate Gq signaling in mouse α cells in vitro and in vivo. Acute stimulation of α cell Gq signaling led to elevated plasma glucagon levels, accompanied by increased insulin release and improved glucose tolerance. Moreover, chronic activation of this pathway greatly improved glucose tolerance in obese mice. We also identified an endogenous Gq-coupled receptor (vasopressin 1b receptor; V1bR) that was enriched in mouse and human α cells. Agonist-induced activation of the V1bR strongly stimulated glucagon release in a Gq-dependent fashion. In vivo studies indicated that V1bR-mediated glucagon release played a key role in the counterregulatory hyperglucagonemia under hypoglycemic and glucopenic conditions. These data indicate that α cell Gq signaling represents an important regulator of glucagon secretion, resulting in multiple beneficial metabolic effects. Thus, drugs that target α cell–enriched Gq-coupled receptors may prove useful to restore euglycemia in various pathophysiological conditions.

Authors

Liu Liu, Diptadip Dattaroy, Katherine F. Simpson, Luiz F. Barella, Yinghong Cui, Yan Xiong, Jian Jin, Gabriele M. König, Evi Kostenis, Jefferey C. Roman, Klaus H. Kaestner, Nicolai M. Doliba, Jürgen Wess

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 442 145
PDF 118 30
Figure 425 1
Supplemental data 51 6
Citation downloads 101 0
Totals 1,137 182
Total Views 1,319

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts