Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Biochemical, biophysical, and immunological characterization of respiratory secretions in severe SARS-CoV-2 infections
Michael J. Kratochvil, Gernot Kaber, Sally Demirdjian, Pamela C. Cai, Elizabeth B. Burgener, Nadine Nagy, Graham L. Barlow, Medeea Popescu, Mark R. Nicolls, Michael G. Ozawa, Donald P. Regula, Ana E. Pacheco-Navarro, Samuel Yang, Vinicio A. de Jesus Perez, Harry Karmouty-Quintana, Andrew M. Peters, Bihong Zhao, Maximilian L. Buja, Pamela Y. Johnson, Robert B. Vernon, Thomas N. Wight, Stanford COVID-19 Biobank Study Group, Carlos E. Milla, Angela J. Rogers, Andrew J. Spakowitz, Sarah C. Heilshorn, Paul L. Bollyky
Michael J. Kratochvil, Gernot Kaber, Sally Demirdjian, Pamela C. Cai, Elizabeth B. Burgener, Nadine Nagy, Graham L. Barlow, Medeea Popescu, Mark R. Nicolls, Michael G. Ozawa, Donald P. Regula, Ana E. Pacheco-Navarro, Samuel Yang, Vinicio A. de Jesus Perez, Harry Karmouty-Quintana, Andrew M. Peters, Bihong Zhao, Maximilian L. Buja, Pamela Y. Johnson, Robert B. Vernon, Thomas N. Wight, Stanford COVID-19 Biobank Study Group, Carlos E. Milla, Angela J. Rogers, Andrew J. Spakowitz, Sarah C. Heilshorn, Paul L. Bollyky
View: Text | PDF
Research Article COVID-19 Pulmonology

Biochemical, biophysical, and immunological characterization of respiratory secretions in severe SARS-CoV-2 infections

  • Text
  • PDF
Abstract

Thick, viscous respiratory secretions are a major pathogenic feature of COVID-19, but the composition and physical properties of these secretions are poorly understood. We characterized the composition and rheological properties (i.e., resistance to flow) of respiratory secretions collected from intubated COVID-19 patients. We found the percentages of solids and protein content were greatly elevated in COVID-19 compared with heathy control samples and closely resembled levels seen in cystic fibrosis, a genetic disease known for thick, tenacious respiratory secretions. DNA and hyaluronan (HA) were major components of respiratory secretions in COVID-19 and were likewise abundant in cadaveric lung tissues from these patients. COVID-19 secretions exhibited heterogeneous rheological behaviors, with thicker samples showing increased sensitivity to DNase and hyaluronidase treatment. In histologic sections from these same patients, we observed increased accumulation of HA and the hyaladherin versican but reduced tumor necrosis factor–stimulated gene-6 staining, consistent with the inflammatory nature of these secretions. Finally, we observed diminished type I interferon and enhanced inflammatory cytokines in these secretions. Overall, our studies indicated that increases in HA and DNA in COVID-19 respiratory secretion samples correlated with enhanced inflammatory burden and suggested that DNA and HA may be viable therapeutic targets in COVID-19 infection.

Authors

Michael J. Kratochvil, Gernot Kaber, Sally Demirdjian, Pamela C. Cai, Elizabeth B. Burgener, Nadine Nagy, Graham L. Barlow, Medeea Popescu, Mark R. Nicolls, Michael G. Ozawa, Donald P. Regula, Ana E. Pacheco-Navarro, Samuel Yang, Vinicio A. de Jesus Perez, Harry Karmouty-Quintana, Andrew M. Peters, Bihong Zhao, Maximilian L. Buja, Pamela Y. Johnson, Robert B. Vernon, Thomas N. Wight, Stanford COVID-19 Biobank Study Group, Carlos E. Milla, Angela J. Rogers, Andrew J. Spakowitz, Sarah C. Heilshorn, Paul L. Bollyky

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (5.12 MB)

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts