Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Suppression of allograft rejection by regulatory B cells induced via TLR signaling
Kang Mi Lee, Qiang Fu, Guoli Huai, Kevin Deng, Ji Lei, Lisa Kojima, Divyansh Agarwal, Peter van Galen, Shoko Kimura, Naoki Tanimine, Laura Washburn, Heidi Yeh, Ali Naji, Charles G. Rickert, Christian LeGuern, James F. Markmann
Kang Mi Lee, Qiang Fu, Guoli Huai, Kevin Deng, Ji Lei, Lisa Kojima, Divyansh Agarwal, Peter van Galen, Shoko Kimura, Naoki Tanimine, Laura Washburn, Heidi Yeh, Ali Naji, Charles G. Rickert, Christian LeGuern, James F. Markmann
View: Text | PDF
Research Article Immunology Transplantation

Suppression of allograft rejection by regulatory B cells induced via TLR signaling

  • Text
  • PDF
Abstract

B lymphocytes have long been recognized for their critical contributions to adaptive immunity, providing defense against pathogens through cognate antigen presentation to T cells and Ab production. More recently appreciated is that B cells are also integral in securing self-tolerance; this has led to interest in their therapeutic application to downregulate unwanted immune responses, such as transplant rejection. In this study, we found that PMA- and ionomycin-activated mouse B cells acquire regulatory properties following stimulation through TLR4/TLR9 receptors (Bregs-TLR). Bregs-TLR efficiently inhibited T cell proliferation in vitro and prevented allograft rejection. Unlike most reported Breg activities, the inhibition of alloimmune responses by Bregs-TLR relied on the expression of TGF-β and not IL-10. In vivo, Bregs-TLR interrupted donor-specific T cell expansion and induced Tregs in a TGF-β–dependent manner. RNA-Seq analyses corroborated the involvement of TGF-β pathways in Breg-TLR function, identified potential gene pathways implicated in preventing graft rejection, and suggested targets to foster Breg regulation.

Authors

Kang Mi Lee, Qiang Fu, Guoli Huai, Kevin Deng, Ji Lei, Lisa Kojima, Divyansh Agarwal, Peter van Galen, Shoko Kimura, Naoki Tanimine, Laura Washburn, Heidi Yeh, Ali Naji, Charles G. Rickert, Christian LeGuern, James F. Markmann

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 1,223 247
PDF 202 62
Figure 884 6
Supplemental data 61 8
Citation downloads 83 0
Totals 2,453 323
Total Views 2,776

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts