Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

The molecular chaperone GRP170 protects against ER stress and acute kidney injury in mice
Aidan W. Porter, Diep N. Nguyen, Dennis R. Clayton, Wily G. Ruiz, Stephanie M. Mutchler, Evan C. Ray, Allison L. Marciszyn, Lubika J. Nkashama, Arohan R. Subramanya, Sebastien Gingras, Thomas R. Kleyman, Gerard Apodaca, Linda M. Hendershot, Jeffrey L. Brodsky, Teresa M. Buck
Aidan W. Porter, Diep N. Nguyen, Dennis R. Clayton, Wily G. Ruiz, Stephanie M. Mutchler, Evan C. Ray, Allison L. Marciszyn, Lubika J. Nkashama, Arohan R. Subramanya, Sebastien Gingras, Thomas R. Kleyman, Gerard Apodaca, Linda M. Hendershot, Jeffrey L. Brodsky, Teresa M. Buck
View: Text | PDF
Research Article Nephrology

The molecular chaperone GRP170 protects against ER stress and acute kidney injury in mice

  • Text
  • PDF
Abstract

Molecular chaperones are responsible for maintaining cellular homeostasis, and one such chaperone, GRP170, is an endoplasmic reticulum (ER) resident that oversees both protein biogenesis and quality control. We previously discovered that GRP170 regulates the degradation and assembly of the epithelial sodium channel (ENaC), which reabsorbs sodium in the distal nephron and thereby regulates salt-water homeostasis and blood pressure. To define the role of GRP170 — and, more generally, molecular chaperones in kidney physiology — we developed an inducible, nephron-specific GRP170-KO mouse. Here, we show that GRP170 deficiency causes a dramatic phenotype: profound hypovolemia, hyperaldosteronemia, and dysregulation of ion homeostasis, all of which are associated with the loss of ENaC. Additionally, the GRP170-KO mouse exhibits hallmarks of acute kidney injury (AKI). We further demonstrate that the unfolded protein response (UPR) is activated in the GRP170-deficient mouse. Notably, the UPR is also activated in AKI when originating from various other etiologies, including ischemia, sepsis, glomerulonephritis, nephrotic syndrome, and transplant rejection. Our work establishes the central role of GRP170 in kidney homeostasis and directly links molecular chaperone function to kidney injury.

Authors

Aidan W. Porter, Diep N. Nguyen, Dennis R. Clayton, Wily G. Ruiz, Stephanie M. Mutchler, Evan C. Ray, Allison L. Marciszyn, Lubika J. Nkashama, Arohan R. Subramanya, Sebastien Gingras, Thomas R. Kleyman, Gerard Apodaca, Linda M. Hendershot, Jeffrey L. Brodsky, Teresa M. Buck

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 782 184
PDF 121 32
Figure 420 4
Supplemental data 65 16
Citation downloads 81 0
Totals 1,469 236
Total Views 1,705

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts