Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
A TCR mimic monoclonal antibody reactive with the “public” phospho-neoantigen pIRS2/HLA-A*02:01 complex
Tao Dao, Sung Soo Mun, Zaki Molvi, Tatyana Korontsvit, Martin G. Klatt, Abdul G. Khan, Elisabeth K. Nyakatura, Mary Ann Pohl, Thomas E. White, Paul J. Balderes, Ivo C. Lorenz, Richard J. O’Reilly, David A. Scheinberg
Tao Dao, Sung Soo Mun, Zaki Molvi, Tatyana Korontsvit, Martin G. Klatt, Abdul G. Khan, Elisabeth K. Nyakatura, Mary Ann Pohl, Thomas E. White, Paul J. Balderes, Ivo C. Lorenz, Richard J. O’Reilly, David A. Scheinberg
View: Text | PDF
Research Article Immunology Oncology

A TCR mimic monoclonal antibody reactive with the “public” phospho-neoantigen pIRS2/HLA-A*02:01 complex

  • Text
  • PDF
Abstract

Phosphopeptides derived from dysregulated protein phosphorylation in cancer cells can be processed and presented by MHC class I and class II molecules and, therefore, represent an untapped class of tumor-specific antigens that could be used as widely expressed “public” cancer neoantigens (NeoAgs). We generated a TCR mimic (TCRm) mAb, 6B1, specific for a phosphopeptide derived from insulin receptor substrate 2 (pIRS2) presented by HLA-A*02:01. The pIRS2 epitope’s presentation by HLA-A*02:01 was confirmed by mass spectrometry. The TCRm 6B1 specifically bound to pIRS2/HLA-A2 complex on tumor cell lines that expressed pIRS2 in the context of HLA-A*02:01. Bispecific mAbs engaging CD3 of T cells were able to kill tumor cell lines in a pIRS2- and HLA-A*02:01–restricted manner. Structure modeling shows a prerequisite for an arginine or lysine at the first position to bind mAb. Therefore, 6B1 could recognize phosphopeptides derived from various phosphorylated proteins with similar amino acid compositions. This raised the possibility that a TCRm specific for the pIRS2/HLA-A2 complex could target a range of phosphopeptides presented by HLA-A*02:01 in various tumor cells. This is the first TCRm mAb to our knowledge targeting a phosphopeptide/MHC class I complex; the potential of this class of agents for clinical applications warrants further investigation.

Authors

Tao Dao, Sung Soo Mun, Zaki Molvi, Tatyana Korontsvit, Martin G. Klatt, Abdul G. Khan, Elisabeth K. Nyakatura, Mary Ann Pohl, Thomas E. White, Paul J. Balderes, Ivo C. Lorenz, Richard J. O’Reilly, David A. Scheinberg

×

Figure 4

Specificity of 6B1 BisAbs.

Options: View larger image (or click on image) Download as PowerPoint
Specificity of 6B1 BisAbs.
(A) Schematic of 6B1 BisAb panel. Five differ...
(A) Schematic of 6B1 BisAb panel. Five different BisAb formats engaging anti-CD3 mAb 2LK are shown as indicated. Binding of 6B1 BisAbs to T2 cells. (B–E) T2 cells (B) were pulsed with pIRS2 (D), WT-IRS2 (E), or HPV (C) peptide at a concentration of 20 μg/mL and were stained with 6B1 BisAbs at the concentration of 1 or 0.1 μg/mL, followed by secondary anti-His-tag mAb staining. The staining included secondary mAb (2Ab) or isotype control human IgG1 (hiso).

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts