Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Rapid, robust, and sustainable antibody responses to mRNA COVID-19 vaccine in convalescent COVID-19 individuals
Sabrina E. Racine-Brzostek, Jim K. Yee, Ashley Sukhu, Yuqing Qiu, Sophie Rand, Paul D. Barone, Ying Hao, He S. Yang, Qing H. Meng, Fred S. Apple, Yuanyuan Shi, Amy Chadburn, Encouse Golden, Silvia C. Formenti, Melissa M. Cushing, Zhen Zhao
Sabrina E. Racine-Brzostek, Jim K. Yee, Ashley Sukhu, Yuqing Qiu, Sophie Rand, Paul D. Barone, Ying Hao, He S. Yang, Qing H. Meng, Fred S. Apple, Yuanyuan Shi, Amy Chadburn, Encouse Golden, Silvia C. Formenti, Melissa M. Cushing, Zhen Zhao
View: Text | PDF
Research Article COVID-19 Immunology

Rapid, robust, and sustainable antibody responses to mRNA COVID-19 vaccine in convalescent COVID-19 individuals

  • Text
  • PDF
Abstract

Longitudinal studies are needed to evaluate the SARS-CoV-2 mRNA vaccine antibody response under real-world conditions. This longitudinal study investigated the quantity and quality of SARS-CoV-2 antibody response in 846 specimens from 350 patients, comparing BNT162b2-vaccinated individuals (19 previously diagnosed with COVID-19, termed RecoVax; and 49 never diagnosed, termed NaiveVax) with 122 hospitalized unvaccinated (HospNoVax) and 160 outpatient unvaccinated (OutPtNoVax) COVID-19 patients. NaiveVax experienced delay in generating SARS-CoV-2 total antibodies (TAb) and surrogate neutralizing antibodies (SNAb) after the first vaccine dose (D1) but rapid increase in antibody levels after the second dose (D2). However, these never reached RecoVax’s robust levels. In fact, NaiveVax TAb and SNAb levels decreased 4 weeks after D2. For the most part, RecoVax TAb persisted, after reaching maximal levels 2 weeks after D2, but SNAb decreased significantly about 6 months after D1. Although NaiveVax avidity lagged behind that of RecoVax for most of the follow-up periods, NaiveVax did reach similar avidity by about 6 months after D1. These data suggest that 1 vaccine dose elicits maximal antibody response in RecoVax and may be sufficient. Also, despite decreasing levels in TAb and SNAb over time, long-term avidity may be a measure worth evaluating and possibly correlating to vaccine efficacy.

Authors

Sabrina E. Racine-Brzostek, Jim K. Yee, Ashley Sukhu, Yuqing Qiu, Sophie Rand, Paul D. Barone, Ying Hao, He S. Yang, Qing H. Meng, Fred S. Apple, Yuanyuan Shi, Amy Chadburn, Encouse Golden, Silvia C. Formenti, Melissa M. Cushing, Zhen Zhao

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 470 44
PDF 90 9
Figure 209 1
Table 31 0
Supplemental data 47 1
Citation downloads 100 0
Totals 947 55
Total Views 1,002
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts